
ne
A nice editor
Version 3.3.0

by Sebastiano Vigna and Todd M. Lewis

Copyright c© 1993-1998 Sebastiano Vigna
Copyright c© 1999-2020 Todd M. Lewis and Sebastiano Vigna
Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided that the entire resulting derived work is distributed under the terms
of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another language, under
the above conditions for modified versions, except that this permission notice may be stated in a
translation approved by the Free Software Foundation.

Chapter 1: Introduction 1

1 Introduction

ne is a full screen text editor for UN*X (or, more precisely, for POSIX: see Chapter 7 [Motivations
and Design], page 65). I came to the decision to write such an editor after getting completely sick of
vi, both from a feature and user interface point of view. I needed an editor that I could use through a
telnet connection or a phone line and that wouldn’t fire off a full-blown LITHP1 operating system
just to do some editing.

A concise overview of the main features follows:
• three user interfaces: control keystrokes, command line, and menus; keystrokes and menus are

completely configurable;
• syntax highlighting;
• full support for UTF-8 files, including multiple-column characters;
• 64-bit file/line length;
• simple scripting language where scripts can be generated via an idiotproof record/play method;
• unlimited undo/redo capability (can be disabled with a command);
• automatic preferences system based on the extension of the file name being edited or regex

content matching;
• automatic completion of prefixes using words in your documents as dictionary;
• a file requester with completion features for easy file retrieval;
• extended regular expression search and replace à la emacs and vi;
• a very compact memory model—you can easily load and modify very large files, even if they

do not fit your core memory;
• editing of binary files.

1 This otherwise unremarkable language is distinguished by the absence of an ‘s’ in its character set; users must
substitute ‘th’. LITHP is said to be useful in protheththing lithtth.

2 ne’s manual

Chapter 2: Basics 3

2 Basics
Simple things should be simple. Complex things should be possible. (Alan Kay)

ne’s user interface is essentially a compromise between the limits of character driven terminals
and the power of GUIs. While real editing is done without ever touching a mouse, it is also true
that editing should be doable without ever touching a manual. These two conflicting goals can
be accommodated easily in a single program if we can offer a series of interfaces that allow for
differentiated use.

In other words, it is unlikely that an ne wizard will ever have to activate a menu, but to become an
expert user you just have to use the menus enough to learn by heart the most important keystrokes.
A good manual is always invaluable when one comes to configuration and esoteric features, but few
users will ever need to change ne’s menus or key bindings.

Another important thing is that powerful features should always be accessible, at least in part, to
every user. The average user should be able to record his actions, replay them, and save them in a
humanly readable format for further use and editing.

In the following sections we shall take a quick tour of ne’s features.

2.1 Terminology
In this section we explain and contrast some of the terms ne uses. Understanding these distinctions
will go a long way towards making the rest of this manual make sense.

A file is a group of bytes stored on disk. This may seem rather obvious, but the important
distinction here is that ne does not edit files; it edits documents.

A document is what ne calls one of the “text thingies” that you can edit. It is a sequence of
lines of text in the computer’s memory—not on disk.1 Documents can be created, edited, saved in
files, loaded from files, discarded, et cetera. When a document is loaded from or saved to a file, it
remains associated with that file by name until the document is either closed or saved to a different
file. Interactions between documents and files are handled by the commands under the ‘File’ menu.
The ‘Documents’ menu commands only deal with documents. See Section 3.7 [Menus], page 17.

Internally, ne holds its documents in buffers. A buffer is a chunk of memory in which ne holds
something. For example, each document is held in its own buffer, as are any loaded or recorded
macros, undo records, a copy of your last deleted line of text, a copy of all your previous responses
to long input, and several other things.

2.2 Starting
To start ne, just type ‘ne’ and press RETURN. If you want to edit some specific file(s), you can put
their name(s) on the command line just after the command name, as for any UN*X command. The
screen of your terminal will be cleared (or filled with text loaded from the first file you specified).
You can also pipe the result of a command directly into ne: it will be loaded and opened as the first
document. See Section 3.1 [Arguments], page 11 for other command line options.

Writing text is pretty straightforward: if your terminal is properly configured, every key will
(should) do what you expect. Alphabetic characters insert text, cursor keys move the cursor, and

1 Actually, it can be in a region of the disk used to simulate a larger memory. ne will switch to such a simulation
whenever the computer’s memory is not sufficient for editing a file. This means, in particular, that out-of-memory
errors can be caused by insufficient disk space, too.

4 ne’s manual

so on. You can use the DELETE and BACKSPACE key to perform corrections. If your keyboard
has an INSERT key, you can use it to toggle (switch from on to off, or vice versa) insert mode.
In general, ne tries to squeeze everything it can from your keyboard. Function keys and special
movement keys should work flawlessly if your terminal is properly configured. If not, complain to
your system administrator. If that doesn’t help, see Section 5.1 [Key Bindings], page 59.

At the bottom of the screen, you will see a line containing some numbers and letters. This is
called the status bar because it reports to you part of the internal state of the editor. At startup, the
status bar has the following form:

L: 1 C: 1 12% ia----pvu-t------@A* <unnamed>

(the numbers could be different, and a file name could be shown as last item instead of
‘<unnamed>’). You probably already guessed that the numbers after ‘L:’ and ‘C:’ are your
cursor’s line and column numbers, respectively, whereas the percentage indicates approximately
your position in the file. The small letters represent user flags that you can turn on and off. In
particular, ‘i’ tells you that insert mode is on, while ‘p’ tells that the automatic preferences system
is activated. The ‘*’ means this document has not been saved. For a thorough explanation of the
meaning of the flags on the status bar, see Section 3.2 [The Status Bar], page 12.

Once you are accustomed to cursor movement and line editing, it is time to press F1 (the first
function key), or in case your keyboard does not have such a key, ESCAPE. Immediately, the menu
bar will appear, and the first menu will be drawn. (If you find yourself waiting for the menu to
appear, you can press ESCAPE twice in a row.) You can now move around menus and menu items
by pressing the cursor keys. Moreover, a lower case alphabetic key will move to the next item in the
current menu whose name starts with that letter, and an upper case alphabetic key will move to the
next menu whose name starts with that letter.

Moving around the menus should give you an idea of the capabilities of ne. If you want to
save your work, you should use the ‘Save As...’ item from the ‘File’ menu. Menus are fully
discussed in Section 3.7 [Menus], page 17. When you want to exit from the menu system, press
F1 (or ESCAPE) again. If instead you prefer to choose a command and execute it, move to the
respective menu item and press RETURN.

At the end of several menu items you will find strange symbols like ˆA or F1. They represent
shortcuts for the respective menu items. In other words, instead of activating, selecting and exe-
cuting a menu item, which can take seconds, you can simply press a couple of keys. The symbol
‘ˆ’ in front of a character denotes the shortcut produced by the CONTROL key plus that character
(we assume here that you are perfectly aware of the usage of the CONTROL key: it is just as if you
had to type a capital letter with SHIFT). The descriptions of the form Fn represent instead function
keys. Finally, the symbol ‘[’ in front of a character denotes the shortcut produced by CONTROL
plus META (a.k.a. ALT) plus that character, or META plus that character, depending on your ter-
minal emulator—you must check for yourself. Moreover, these last bindings may not work with
some terminals, in which case you can replace them with a sequence: just press the ESCAPE key
followed by the letter. A few menu items are bound to two control sequences (just in case one does
not work, or it is impractical).

Note that under certain conditions (for instance, while using ne through a telnet connection)
some of the shortcuts might not work because they are trapped by the operating system for other
purposes (see Chapter 6 [Hints and Tricks], page 63).

Finally, we have the third and last interface to ne’s features: the command line. If you press
CONTROL-K, or ESCAPE followed by ‘:’ (a la vi), you will be requested to enter a command to

Chapter 2: Basics 5

execute. Just press RETURN for the time being (or, if you are really interested in this topic, see
Section 3.4 [The Command Line], page 15).

In the sections that follow, when explaining how to use a command we shall usually describe the
corresponding menu item. The related shortcut and command can be found on the menu item itself,
and in Section 3.7 [Menus], page 17.

2.3 Loading and Saving
The first thing to learn about an editor is how to exit. ne has a CloseDoc command that can be
activated by pressing CONTROL-Q, by choosing the ‘Close’ item of the ‘Document’ menu, or by
activating the command line with CONTROL-K, writing ‘cd’ and pressing RETURN. Its effect is
to close the current document without saving any modifications. (You will be requested to confirm
your choice in case the current document has been modified since the last save.)

There is also a Quit command, which closes all the documents without saving any modifica-
tions, and a Save&Exit (META-X) command, which saves the modified documents before quitting.

This choice of shortcuts could surprise you. Wouldn’t ‘Quit’ be a much better candidate for
CONTROL-Q? Well, experience shows that the most common operation is closing a document rather
than quitting the editor. If there is just one document, the two operations coincide (this is typical,
for instance, when you use ne for writing electronic mail), and if there are many documents, it is far
more common to close a single document than all the existing documents.

If you want to load a file, you may use the Open command, which can be activated by pressing
CONTROL-O, by choosing the ‘Open...’ item of the ‘File’ menu, or by typing it on the command
line (as in the previous case). You will be prompted with a list of files and directories in the current
working directory. (You can tell the directory names because they end with a slash; they will also
appear in a bold face if your terminal allows it.) You can select any of the file names by using the
cursor keys, or any other movement key. Pressing an alphabetic key will move the cursor to the first
entry after the cursor that starts with the given letter. When the cursor is positioned over the file you
want to open, press RETURN, and the file will be opened. If instead you move to a directory name,
pressing RETURN will display the contents of that directory.

You can also escape with F1, ESCAPE or ESCAPE-ESCAPE and manually type the file name
on the command line (or escape again, and abort the Open operation). If you escape with TAB
instead, the file or directory under the cursor will be copied to the input line, where you can modify
it manually. ne also has file name completion features activated by TAB (see Section 3.3 [The Input
Line], page 14).

When you want to save a file, just use the command Save (CONTROL-S). It will use the current
document name or will ask you for one if the current document has no name. SaveAs, on the
other hand, will always ask for a new name before saving the file. SaveAll will save all modified
documents. If the file you are saving a document to has changed since you last loaded or saved it,
perhaps because another user updated it while you were editing, newill warn you before overwriting
the file.

If ne is interrupted by an external signal (for instance, if your terminal crashes), it will try to
save your work in some emergency files. These files will have names similar to your current files,
but they will have a pound sign ‘#’ prefixed to their names. See Section 3.10 [Emergency Save],
page 25.

6 ne’s manual

2.4 Editing
An editor is presumably used for editing text. If you decide not to edit text, you probably don’t want
to use ne, because that’s all it does—it edits text. It does not play Tetris. It does not evaluate
recursive functions. It does not solve your love problems. It just allows you to edit text.

The design of ne makes editing extremely natural and straightforward. There is nothing special
you have to do to start editing once you’ve started ne. Just start typing, and the text you type shows
up in your document.

ne provides two ways of deleting characters: the BACKSPACE key (or CONTROL-H, if you have
no such key) and the DELETE key. In the former case you delete the character to the left of the
cursor, while in the latter case you delete the character just under the cursor. This is in contrast with
many UN*X editors, which for unknown reasons decide to limit your ways of destroying things—
something notoriously much funnier than creating. (See Section 4.11.4 [DeleteChar], page 54 and
Section 4.11.7 [Backspace], page 54.)

If you want to delete a line, you can use the DeleteLine command, or CONTROL-Y. A very
nice feature of ne is that each time a nonempty line is deleted, it is stored in a temporary buffer
from which it can be undeleted via the UndelLine command or CONTROL-U. (See Section 4.11.9
[DeleteLine], page 55 and Section 4.7.3 [UndelLine], page 38.)

If you want to copy, cut, paste, shift or erase a block of text, you have to set a mark. This is done
via the Mark command, activated by choosing the ‘Mark Block’ item of the ‘Edit’ menu, or by
pressing CONTROL-B (think “block”). This command sets the mark at the current cursor position.
Whenever the mark is set, the text between the mark and the cursor can be cut, copied or erased.
Note that by using CONTROL-@ you can set a vertical mark instead, which allows you to mark
rectangles of text. Whenever a mark has been set, either an ‘M’ appears on the command line or a
‘V’ appears if the mark is vertical. If you forget where the mark is currently, you can use the ‘Goto
Mark’ menu item of the ‘Search’ menu to move the cursor to it.

The block of text you cut or copy is saved in a clip, which you can ‘Paste’ somewhere else in
your document, or save it to a file with the ‘Save Clip...’ menu item of the ‘Edit’ menu. You
can also load a file directly into a clip with ‘Open Clip...’, and ‘Paste’ it anywhere. All such
operations act on the current clip, which is by default the clip 0. You can change the current clip
number with the ClipNumber command. See Section 4.4.11 [ClipNumber], page 32.

One of the most noteworthy features of ne is its unlimited undo/redo capability. Each editing
action is recorded, and can be played back and forth as much as you like. Undo and redo are bound
to the function keys F5 and F6.

Another interesting feature of ne is its ability to load an unlimited number of documents. If you
activate the NewDoc command (using the ‘Document’ menu or the command line), a new, empty
document will be created. You can switch between your documents with F2 and F3, which are
bound to the PrevDoc and NextDoc commands. If you have a lot of documents, the ‘Select...’
menu item (F4) prompts you with the list of names of currently loaded documents and allows you to
choose directly which to edit. In that list, names of documents with unsaved changes will be bold.
You can also change their relative order in that list with the F2 and F3 keys.

2.5 Basic Preferences
ne has a number of flags that specify alternative behaviors, the most prototypical example being the
insert flag, which specifies whether the text you type is inserted into the existing text or replaces it.

Chapter 2: Basics 7

You can toggle this flag with the ‘Insert’ menu item of the ‘Prefs’ menu, or with the INSERT
key of your keyboard. (Toggle means to change the value of a flag from true to false, or from false
to true; see Section 4.9.4 [Insert], page 42.)

Another important flag is the free form flag, which specifies whether the cursor can be moved
beyond the right end of each line of text or only to existing text (a la vi). Programmers usually
prefer non free form editing; text writers seem to prefer free form. See Section 4.9.6 [FreeForm],
page 42 for some elaboration. The free form flag can be set with the ‘Free Form’ menu item of the
‘Prefs’ menu.

At this point, we suggest you explore by trial and error the other flags of the ‘Prefs’ menu, or
try the Flags command (see Section 4.9.1 [Flags], page 40), which explains all the flags and the
commands that operate on them. We prefer spending a few words discussing automatic preferences
or autoprefs, and default preferences or defprefs.

Having many flags ensures a high degree of flexibility, but it can turn editing into a nightmare if
you have to turn on and off dozens of flags for each different kind of file you edit. ne’s solution is to
load your default preferences whenever ne is run before loading any file, then additionally set your
stated preferences automatically for each file type as files are loaded. A file’s type is determined by
the extension of its file name, that is, the last group of letters after the last dot. For instance, the
extension of ‘ne.texinfo’ is ‘texinfo’, the extension of ‘source.c’ is ‘c’, and the extension of
‘my.txt’ is ‘txt’.

Thus, when you select the ‘Save Def Prefs’ menu item or the SaveDefPrefs command, a
special preferences file named ‘.default#ap’ is saved. In addition to other preferences, this file
also includes a small set of preferences which are global to ne rather than specific to particular docu-
ment types. These preferences are: FastGUI, RequestOrder, StatusBar and VerboseMacros;
see Section 4.9.5 [FastGUI], page 42, See Section 4.9.8 [RequestOrder], page 42, See Section 4.9.9
[StatusBar], page 43, and See Section 4.9.18 [VerboseMacros], page 45. These extra preferences
are not saved by the SaveAutoPrefs command.

By contrast, whenever you select the ‘Save AutoPrefs’ menu item, ne saves the flags of your
current document to be used when you load other files with the same extension. These autoprefs
are saved in a file in your ‘˜/.ne’ directory. This file has the same name as the extension of the
current document with ‘#ap’ appended to it. It contains all the commands necessary to recreate your
current document’s flag settings. Whenever you open a file with this file name extension, ne will
automagically recreate your preferred flag settings for that file type. (There is a flag that inhibits the
process; see Section 4.9.2 [AutoPrefs], page 41.)

Similar to preference flags, the current syntax definition is specific to the current document type,
so it also is saved in autoprefs files by the SaveAutoPrefs command or ‘Save AutoPrefs’ menu;
it is not saved in the ‘.default#ap’ file.

Note that a preferences file—whether ‘.default#ap’ or an AutoPrefs file— is just a macro (as
described in the following section). Thus, it can be edited manually if necessary.

Some files have no extension, but the file type can be discerned by simple examination. Con-
sider for example a file named ‘example’ which contains XML. You may reasonably expect it
to be treated as an ‘.xml’ file rather than a generic file. For the purposes of applying automatic
preferences and syntax definitions, ne provides a mechanism for overriding a wrong or miss-
ing extension with a virtual extension based on a document’s contents. You do this by creating
a ‘˜/.ne/.extensions’ file which is fully described in the Section 5.3 [Virtual Extensions],
page 61 section.

8 ne’s manual

2.6 Basic Macros
Very often, the programmer or the text writer has to repeat some complex editing action over a series
of similar blocks of text. This is where macros come in.

A macro is a stored sequence of commands. Any sequence of commands you find yourself
repeating is an excellent candidate for being made into a macro. You could create a macro by
editing a document that only contains valid ne commands and saving it, but by far the easiest way
to create a macro is to have ne record your actions. ne allows you to record macros and then play
them (execute the commands they contain) many times. You can save them on disk for future use,
edit them, or bind them to any key. You could even reconfigure each key of your keyboard to play a
complex macro if you wanted to.

ne can have any number of named macros loaded at the same time. In addition, each document
can also have one unnamed macro in its current macro buffer. Named macros are typically loaded
from files, while each document’s current macro buffer is where your recorded macro is held before
you save it, play it, or record over it.

Recording a macro is very simple. The keystroke CONTROL-T starts and stops recording a macro.
When you start recording a macro, ne starts recording all your actions (with a few exceptions). You
can see that you are recording a macro if an ‘R’ appears on the status bar. After you stop the
recording process (again using CONTROL-T), you can play the macro with the ‘Play Once’ item
of the ‘Macros’ menu or with the F9 key. If you want to repeat the action many times, the Play

command allows you to specify a number of times to repeat the macro. You can always interrupt
the macro’s execution with CONTROL-\.

A recorded macro has no name. It’s just an anonymous sequence of commands associated with
your current document. It will go away when you record another macro, close the document, or exit
ne. If you want to save your recorded macro for future use, you can give it a name and save it with
the ‘Save Macro...’ menu item or the SaveMacro command. The macro is saved as a regular text
file in your current directory by default or whatever directory you specify when prompted for the
macro’s name. If you save it in your ‘˜/.ne’ directory then it will be easy to access it later from
any other directory. The ‘Open Macro...’ menu item and the OpenMacro command load a macro
from a file into the current document’s buffer just as if you had just Recorded it.

The current setting of your VerboseMacros flag determines whether long or abbreviated com-
mand names are used when saving a macro. For your convenience, SaveMacro will also convert
sequences of InsertChar commands into single—usually much more readable— InsertString

commands, but only if all the inserted characters are simple printable characters, and only if there
are no subsequent Undo commands or macro invocations.

Any macro can be loaded from a file and played with the ‘Play Macro...’ menu item or the
Macro command. (This won’t modify the recorded anonymous macro that may be in the current
macro buffer; OpenMacro does that.) Useful macros can be permanently bound to a keystroke as
explained in Section 5.1 [Key Bindings], page 59. Moreover, whenever a command line does not
specify one of ne’s built in commands, it is assumed to specify the name of a macro to execute.
Thus, you can execute macros just by typing their file names at the command line. Include a path if
the macro file’s directory is different from your current directory or your ‘˜/.ne’ directory.

If the first attempt to open a macro fails, ne checks for a macro with the given name in your
‘˜/.ne’ directory. This allows you to program simple extensions to ne’s command set. For in-
stance, all automatic preferences macros—which are just specially named macros that contain only
commands to set preferences flags—can be executed just by typing their names. For example, if you

Chapter 2: Basics 9

have an automatic preference for the ‘txt’ extension for example, you can set ne’s flags exactly as
if you had loaded a file ending with ‘.txt’ by typing the command txt#ap.

In general, it is a good idea to save frequently used macros in ‘˜/.ne’ so that you can invoke
them by name without specifying a path regardless of your current directory. On the other hand, if
you have a macro that is customized for one document or a set of documents that you store in one
directory, then you might want to save the macro in that directory instead. If you do, then you would
want to cd to that directory before you start ne so that you can access that macro without specifying
a path.

If your macro has the same name as one of ne’s built-in commands, you can only access it with
the Macro name command. Built-in command names are always searched before the ne command
interpreter looks for macros.

The system administrator may make some macros available from the ‘macros’ subdirectory of
ne’s global directory. See Section 3.1 [Arguments], page 11.

Since loading a macro each time it is invoked would be a rather slow and expensive process,
once a named macro has been executed it is cached internally. Subsequent invocations of the named
macro will use the cached version.

Warning: while path and file names are case sensitive when initially loading macros, loaded macro
names are not case sensitive or path sensitive. ne only caches the file name of an already loaded
macro, not the path, and it uses a case insensitive comparison when resolving command names.
As such, if you invoke ‘˜/foobar/MyMacro’, ne remembers it with the case-insensitive name
‘mymacro’; a subsequent call for ‘/usr/MYMACRO’ will instead find and use the cached version
of ‘˜/foobar/MyMacro’. You can clear the cache by using the UnloadMacros command. See
Section 4.6.6 [UnloadMacros], page 37.

The behaviour of macros may vary with different preferences. If the user changes the
AutoIndent and WordWrap flags, for example, new lines and new text may not appear in the
same way they would have when a macro was recorded. Good general purpose macros avoid such
problems by using the PushPrefs command first. This preserves the user’s preferences. Then
they set any preferences that could affect their behaviour. Once that is taken care of they get on
with the actual work for which they were intended. Finally, they use the PopPrefs command to
restore the user’s preferences. Note that if a macro is stopped before it restores the preferences
(either by the user pressing CONTROL-\ or by a command failing) then dealing with the changed
preferences falls to the user.

Any changes made to a document by a macro are recorded just as if you had entered the com-
mands yourself. Therefore you can use the Undo command to roll back those changes one at a time.
This can be useful especially when developing macros, but you may want to be able to undo all
the changes made by a macro with a single Undo command. The AtomicUndo command makes
this possible. If you add AtomicUndo + at the start of your macro and AtomicUndo - at the end,
then the Undo and Redo commands will handle all changes made by your macro atomically, i.e.,
as if they had been made by a single command, even if your macro calls other macros which could
themselves contain matching AtomicUndo + and AtomicUndo - commands. See Section 4.7.5
[AtomicUndo], page 38.

Any line in a macro that starts with a non-alphabetical character is considered a comment, so
you can add comments to a macro by starting a line with ‘#’. Recorded macros sometimes have
comments added to them indicating calls to other macros.

10 ne’s manual

Macros can operate across multiple documents, by using the NextDoc and PrevDoc commands
for example. When you stop recording, the unnamed macro is associated with the current document,
replacing that document’s prior unnamed macro.

You can cancel in-progress macro recording with the Record 0 command, or by selecting
Record Cancel from the Macro menu.

You can append additional recorded commands to your document’s current macro with the
Record 1 command, or by selecting Record Append from the Macro menu.

2.7 More Advanced Features

2.7.1 UTF-8 support
ne can load and manipulate UTF-8 files transparently, in particular on systems that provide UTF-8
I/O. See Section 3.11 [UTF-8 Support], page 25.

2.7.2 Bookmarks
It often happens that you have to browse through a file, switching frequently between a small
number of positions. In this case, you can use bookmarks. There are up to ten bookmarks per
document, each designated by a single digit, with the default being ‘0’. You can set them with
the SetBookmark command, and you can return to any set bookmark with the GotoBookmark

command. Also, ne sets an automatic bookmark (designated by ‘-’) at your current position in a
document whenever you use the GotoBookmark command. You can use a GotoBookmark - com-
mand to return to the location of the previous GotoBookmark command. Doing so will reset the
automatic bookmark, so that subsequent GotoBookmark - commands will switch between those
two locations. The special parameters ‘+1’ and ‘-1’ indicate the next or previous set bookmark in
conjunction with GotoBookmark and UnsetBookmark, but reference the next or previous unset
bookmark when used with SetBookmark. A sequence of GotoBookmark +1 commands lets you
easily cycle through all your set bookmarks. Finally, the special parameter ‘?’ causes SetBookmark
and GotoBookmark to prompt you for a bookmark designation. This prompt includes an indica-
tion of which bookmarks are already set for the current document. See Section 4.10.26 [SetBook-
mark], page 52, Section 4.10.27 [GotoBookmark], page 53, and Section 4.10.28 [UnsetBookmark],
page 53. Note that in the default configuration no key binding is assigned to these commands. If
you use them frequently, you may want to change the key bindings. See Section 5.1 [Key Bindings],
page 59.

2.7.3 Automatic Completion
The AutoComplete command helps you extend a given prefix with matching words from your open
documents. You can specify the AutoCompete command and prefix on the command line, or you
can enter the prefix directly into your document and activate the AutoComplete command. With
the cursor at the right end of your prefix, activate the AutoComplete command by entering either
the ESCAPE-TAB or the ESCAPE-I key sequence, or the CONTROL-META-I key combination, or
by selecting AutoComplete from the Extras menu.

If the prefix can be extended unambiguously, the extension will be immediately inserted into
your document (this is the case, for instance, if only one word matches the prefix), and a message
will tell you whether the extension is an actual word or just the longest possible extension (for
instance, if you expand ‘fo’ and your document contains ‘foobar’ and ‘foofoo’ then the partial

Chapter 2: Basics 11

match will be ‘foo’). Otherwise, ne presents you with a list of all matching words: choose the one
you want and press RETURN, to select it; otherwise, press F1, ESCAPE or ESCAPE-ESCAPE to
cancel the completion operation.

The current state of the CaseSearch flag determines whether the prefix match is case sensitive.
Any matching words which only exist in other open documents but not the current one are displayed
in bold with an asterisk; think of that as a warning that if you select one of these bold words you
will introduce a new word into your current document. Plain words already exist somewhere in your
current document. See Section 4.5.11 [AutoComplete], page 35, and Section 4.5.10 [CaseSearch],
page 35.

2.7.4 Automatic Bracket Matching
Unless you tell it not to (with the AutoMatchBracket command), ne will highlight any recognized
bracket that matches the bracket your cursor is on if that matching bracket is currently visible on
your screen. Recognized bracket pairs are ‘{}’, ‘()’, ‘[]’, ‘<>’, and ‘‘’’. See Section 4.5.8
[AutoMatchBracket], page 35.

2.7.5 MS-DOS files
ne will detect automagically the presence of MS-DOS line terminators (CR/LFs) and set the CR/LF
flag. When the file will be saved, the terminators will be restored correctly. You can change this
behaviour using the PreserveCR and CRLF commands. See Section 4.9.19 [PreserveCR], page 45,
and Section 4.9.20 [CRLF], page 45.

2.7.6 Binary files
ne allows a simplified form of binary editing. If the binary flag is set, only NULLs are considered
newlines when loading or saving. Thus, binary files can be safely loaded, modified and saved.
Inserting a new line or joining two lines has the effect of inserting or deleting a NULL. Be careful
not to mismatch the state of the binary flag when loading and saving the same file.

2.7.7 File requester
The NoFileReq command deactivates the file requester. It is intended for “tough guys” who always
remember the names of their files and can type them at the speed of light (maybe with the help of
the completer, which is activated by the TAB key; see Section 3.3 [The Input Line], page 14).

2.7.8 Executing UN*X commands
There are three ways to execute UN*X commands from within ne. The System command can
run any UN*X command; you will get back into ne as soon as the command execution terminates.
See Section 4.12.10 [System], page 56. The Through (META-T) command (which can be found
in the ‘Edit’ menu), however, is much more powerful; it cuts the current block, passes it as stan-
dard input to any UN*X command, and pastes the command’s output at the current cursor position.
This provides a neat way to pass a part of your document through one of UN*X’s many filter com-
mands (commands that read from standard input and write to standard output, e.g., sort). See
Section 4.4.12 [Through], page 32. Finally, you can use the Suspend (CONTROL-Z) command to
temporarily stop ne and return to your command shell. See Section 4.12.9 [Suspend], page 56.

12 ne’s manual

2.7.9 Advanced key bindings
ne allows you to associate any keystroke with any command, both built-in commands (with or
without parameters) and macros. These associations are refered to as key bindings, which you
define in your ˜/.ne/.keys file. The KeyCode command allows you to see the key code ne sees
in response to any key or key combination on your keyboard. It also shows the command string
currently associated with that key code. This is described in Section 5.1 [Key Bindings], page 59.

The following chapters provide an exhaustive list of the remaining features of ne. See Chapter 3
[Reference], page 11.

Chapter 3: Reference 13

3 Reference

In this chapter we shall methodically overview each part of ne. It is required reading for becoming
an expert user because some commands and features are not available through menus.

3.1 Arguments
The main arguments you can give to ne are the names of files you want to edit. They will be loaded
into separate documents. If you specify --help or -h anywhere on the command line, a simple
help text describing ne’s arguments will be printed.

The +N option causes ne to advance to the N th line of the next document loaded. This option is
fairly common among editors and text display programs like vi and less. The N itself is optional.
Without it, a bare + on the command line causes ne to advance to the last line of the first document.
You can specify a line and column as +N,M. Any non-digit can be used to separate the N from the
M. As it only affects the next document loaded, it can appear multiple times on the command line.

The --binary option causes ne to load the next document in binary mode. Binary mode treats
the normal line termination characters as any other character and only breaks lines on NULL char-
acters. Like +N,M, --binary only affects the next document loaded, and it can appear multiple
times on the command line. See Section 4.9.3 [Binary], page 41.

The --read-only/--readonly/--ro option causes ne to load the next named file into a read-
only document. You can’t modify a read-only document without first taking special action such
as turning off the read-only flag. You can still Save (Section 4.2.3 [Save], page 28) a read-only
document to a file if the file’s permissions allow it, but ne will prompt you before attempting to save
a document marked read-only. The --read-only option only affects the next document loaded,
so it can appear multiple times on the command line. A document’s read-only flag is automatically
set when a file is loaded if the corresponding file is not writable (as determined by the access()

system call) regardless of whether the --read-only option is used. See Section 4.9.11 [ReadOnly],
page 43.

The --no-config/--noconfig option skips the reading of the key bindings and menu con-
figuration files (see Chapter 5 [Configuration], page 59). This is essential if you are experimenting
with a new configuration and you make mistakes in it.

The --prefs extension option makes ne load a specified set of automatic preferences, that
is, those associated with the provided extension, instead of the default ones, before loading the first
file. It can be useful, for instance, when piping a file into ne or when reading from named pipes, as
in those cases there is no file extension from which ne can guess the correct preferences. Note that
preferences are cloned from the current document when a new document is created, so if you open
a number of files without extension this option will propagate to all of them.

The --macro filename option specifies the name of a macro that will be started just after all
documents have been loaded. A typical macro would move the cursor to a certain line.

The --keys filename option and the --menus filename option specify a name different
from the default one (‘.keys’ and ‘.menus’, respectively) for the key bindings and the menu con-
figuration files. Note that ne searches for these files first in the current directory, and then in your
‘˜/.ne’ directory.

The --ansi and the --no-ansi/--noansi options manage ne’s built-in ANSI sequences.
Usually ne tries to retrieve from your system some information that is necessary to handle your

14 ne’s manual

terminal. If for some reason this is impossible, you can ask ne to use a built-in set of sequences
that will work on many terminals using the --ansi option (to be true, ne can be even compiled so
that it uses directly the built-in set, but you need not know this). If you want to be sure (usually for
debugging purposes) that ne is not using the built-in set, you can specify --no-ansi.

The --no-syntax option disables ne’s normal syntax highlighting capability. For most edit-
ing situations, this would be unnecessary, but for extremely large files it may be helpful. Syntax
highlighting incurs small memory usage and processor overhead penalties for each line of text.
The --no-syntax option eliminates that overhead. Note that files longer than ten million bytes
will have syntax highlighting disabled by default, but it is possible to re-enable it. See Section 3.6
[Syntax Highlighting], page 16.

The --utf8 and --no-utf8 options can be used to force or inhibit UTF-8 I/O, overriding the
choice imposed by the system locale. Note, however, that in general it is more advisable to set the
LANG environment variable to a locale supporting UTF-8 (you can usually see the locale list with
locale -a). See Section 3.11 [UTF-8 Support], page 25.

If you need to open a file whose name starts with ‘--’, you can put ‘--’ before the filename,
which will skip command recognition for the next word.

You can use I/O redirection to pipe the output of other commands into your first document. For
example,

ls -l | ne file1.txt --read-only file2.txt

will open three documents: an unnamed document containing the output of the ls -l command,
the contents of ‘file1.txt’, and the contents of ‘file2.txt’ with the read-only flag set.

It’s possible to apply the --binary, --read-only, and +N,M options to the piped unnamed
document by referencing it as a single -. Only the first such file name will reference the piped
document (even if it isn’t the first file name on the command line). Subsequent dashes will be
considered normal file names. If you want the first dash to be treated like a normal file instead of a
reference to the piped document, prefix the dash with ‘--’. Consider these two command lines:

ls -l | ne --read-only +3,8 - file1.txt -

ls -l | ne file1.txt -- - --read-only +3,8 -

ls -l | ne --binary file1.txt --read-only -- -

All three of these commands open ne with three documents: the output of the ls -l command
will be in the first unnamed document, the contents of ‘file1.txt’ will be in the second document,
while the third document will contain the contents of the file ‘-’ (or an empty document with that
name if there is no such file). The first and second commands do exactly the same thing: the
unnamed first document is marked read-only and the cursor is positioned on line 3 column 8, while
the other two document are opened normally. In the case of the third command, ‘file1.txt’ is
opened in binary mode, the document named ‘-’ is marked read-only, while the first, unnamed,
document—which is not referenced on the command line—with the output from ls -l is opened
normally.

Finally, ne has a global directory where the system administrator can store macros, default
preferences, and syntax definitions for all users of the system. The location of this directory is
defined when ne is built, but you can override it by creating and exporting the NE_GLOBAL_DIR

environment variable prior to invoking ne. If you load no files when you start ne, or if you invoke
the About command, it will display a splash screen. The last line on that screen shows the global
directory ne is using, if it exists, or an error message otherwise.

Chapter 3: Reference 15

3.2 The Status Bar
The last line of the screen, the status bar, is reserved by ne for displaying some information about
its internal state. Note that on most terminals it is physically impossible to write a character on the
last column of the last line, so we are not stealing precious editing space.

The status bar looks more or less like this:
L: 31 C: 25 12% iabcwfpvurt!MRPC@8* 20 /foo/bar

The numbers after ‘L:’ and ‘C:’ are the line and column of the cursor position. The first line
and the first column are both number 1. Then, ne shows the percentage of lines before the current
line (it will be 0% on the first line, and 100% on the last line).

Following that are a sequence of letters or dashes. These indicate the status of a series of flags
which we shall look at later.

The hexadecimal digits following the flags give the code for the character at the cursor, and are
displayed optionally (see Section 4.9.10 [HexCode], page 43). If your cursor is at or beyond the
right end of the current line, the code disappears.

The file name appearing after the character code is the file name of the current document. The left
end of very long file names may be truncated to keep the right end visible. Of course, ne is keeping
track internally of the complete file name. It is used by the Save command and as the default input
for the SaveAs command. See Section 4.2.3 [Save], page 28, and Section 4.2.4 [SaveAs], page 28.

The displayed line and column numbers, the percentage indicator and the character code change
when the cursor moves. This fact can really slow down cursor movement if you are using ne

through a slow connection. If you find this to be a problem, it is a good idea to turn off the status
bar using either the ‘Status Bar’ menu item of the ‘Prefs’ menu or the StatusBar command.
See Section 4.9.9 [StatusBar], page 43. Alternatively you can turn on the fast GUI mode using
either the ‘Fast GUI’ menu item of the ‘Prefs’ menu or the FastGUI command (see Section 4.9.5
[FastGUI], page 42). In fast GUI mode the location of the mark is not highlighted, and status bar is
not draw in reverse, so some additional optimization can be done when refreshing it.

The letters after the line and column number represent the status of the flags associated with the
current document. Flags that are off display a ‘-’ instead of a letter. Each flag also has an associated
command. The Flags command describes them all when you don’t have this manual handy. Here’s
the list in detail:

‘i’ appears if the insert flag is true. See Section 4.9.4 [Insert], page 42.

‘a’ appears if the auto indent flag is true. See Section 4.8.8 [AutoIndent], page 40.

‘b’ appears if the back search flag is true. See Section 4.5.9 [SearchBack], page 35.

‘c’ appears if the case sensitive search flag is true. See Section 4.5.10 [CaseSearch],
page 35.

‘w’ appears if the word wrap flag is true. See Section 4.8.7 [WordWrap], page 40.

‘f’ appears if the free form flag is true. See Section 4.9.6 [FreeForm], page 42.

‘p’ appears if the automatic preferences flag is true. See Section 4.9.2 [AutoPrefs],
page 41.

‘v’ appears if the verbose macros flag is true. See Section 4.9.18 [VerboseMacros],
page 45.

16 ne’s manual

‘u’ appears if the undo flag is true. See Section 4.7.4 [DoUndo], page 38.

‘r’ appears if the read only flag is true. See Section 4.9.11 [ReadOnly], page 43.

‘t or T’ appears as ‘t’ if the tabs flag is true, ‘T’ if the shifttabs flag is also true. See Sec-
tion 4.9.14 [Tabs], page 44, Section 4.9.16 [ShiftTabs], page 44.

‘d’ appears if the deltabs flag is true. See Section 4.9.15 [DelTabs], page 44.

‘B or !’ appears if the binary flag is true. See Section 4.9.3 [Binary], page 41.

‘!’ appears in place of ‘B’ when not in binary mode and the last line of the document is
not empty (i.e. the last line of the saved file would not be terminated).

‘M or V’ appears if you are currently marking a block. See Section 4.4.1 [Mark], page 30.

‘V’ can appear in place of ‘M’ if you are currently marking a vertical block. See Sec-
tion 4.4.2 [MarkVert], page 30.

‘R’ appears if you are currently recording a macro. See Section 4.6.1 [Record], page 36.

‘P’ appears if the PreserveCR flag is true. See Section 4.9.19 [PreserveCR], page 45.

‘C’ appears if the CRLF flag is true. See Section 4.9.20 [CRLF], page 45.

‘@’ appears if UTF-8 I/O is enabled. See Section 4.9.33 [UTF8IO], page 49.

‘A/8/U’ denotes the current document encoding—US-ASCII, 8-bit or UTF-8. See
Section 4.9.31 [UTF8], page 48.

‘*’ appears if the document has been modified since the last save, or if the Modified

command was issued to set this flag. See Section 4.9.29 [Modified], page 47. This ‘-’
or ‘*’ may be underlined, which indicates the corresponding file’s modification time
has changed since the current document was loaded from or saved to that file.

Note that sometimes ne needs to communicate some message to you. The message is usually
written over the status bar, where it stays until you do something. Any action such as moving the
cursor or inserting a character will restore the normal status bar.

3.3 The Input Line
The bottom line of the screen is usually occupied by the status bar (see Section 3.2 [The Status Bar],
page 12). However, whenever ne prompts you for a command or file name or asks you to confirm
some action, the bottom line becomes the input line. You can see this because a prompt is displayed
at the start of the line, suggesting what kind of input is required. (Prompts always ends with a colon,
so it is easy to distinguish them from error messages, which overwrite the status bar from time to
time.)

ne uses the input line in two essentially different ways: immediate input and long input. You
can easily distinguish between these two modes because in immediate input mode the cursor is not
on the input line, while for long input mode it is.

Immediate input is used whenever ne needs you to specify a simple choice that can be expressed
by one character (for example, ‘y’ or ‘n’). When you type the character, ne will immediately accept
and use your input. Most immediate inputs display a character just after the prompt. This character
is the default response, which is used if you just press the RETURN key. Note that immediate input

Chapter 3: Reference 17

is not case sensitive. Moreover, if a yes/no choice is requested, anything other than ‘y’ will be
considered a negative response.

Long input is used when a whole string is required. You can enter and edit your response to
long inputs like a line of text in a document. Most key bindings related to line editing work on the
command line exactly as they do in a document. This is true even of custom key bindings. Just edit
as you are used to. Moreover, the you can paste the first line of the current clip using the keystroke
that is bound to the Paste command, usually CONTROL-V. If your long input is longer than the
screen width, the input line scrolls to accommodate your text so you can input very long lines even
on small monitors. (There is a limit of 2048 characters.)

The default response to a long input is the response you gave to the previous long input. Your
first action when presented with a long input will either erase the default response or allow you to
edit it. If the first thing you type is a printing character, the default response will be erased. Anything
else (cursor movement for example) will allow you to edit it further.

Long input also lets you access your previous long input responses with the up and down cursor
commands (or with wider movement commands, such as start/end of file, page up/down, etc.).
Once you find a previous input you like, you can edit it further. Long input history is not document
specific, so you can recall any of your inputs regardless of which document was active when you
entered it. Furthermore, ne saves the most recent long inputs in ‘˜/.ne/.history’ when you end
your ne session and loads them again when you begin another ne session.

Invoking the Find command, usually bound to CONTROL-F, brings up a requester showing your
prior inputs. You can close the requester with the ESCAPE key, replace your input line with a
highlighted prior entry with the ENTER key, or insert that prior entry into your input line with the
TAB key.

When asked to input a number, you can choose between decimal, octal and hexadecimal notation
in the standard way: a number starting with ‘0’ is considered in octal, a number starting with ‘0x’
is considered in hexadecimal, and in all other cases decimal base is assumed.

Whenever a file name is requested, you can type a partial file name and complete it with the
TAB key. ne will scan the current directory (or the directory that you partially specified) and search
for the files matching your partial suggestion. The longest prefix common to all such files will be
copied to the input line (ne will beep if no completion exists). It’s easier done than said—just try.
If you press TAB again, you will be brought into the file requester: only the files and directories
matching your partial specification will appear, and as usual you will be able to navigate and select
a file or escape. See Section 3.5 [The Requester], page 15. Note that ne considers the last word on
the input line the partial file name to complete, no matter where the cursor is currently (you must
use quotes if the name contains spaces, even if it is the only item on the input line).

Complete long input with the RETURN key. You can cancel a long input using F1, ESCAPE,
ESCAPE-ESCAPE or any key that is bound to the Escape command. The effect will vary depend-
ing on what your were requested to input, but the execution of the command requiring the input will
stop.

3.4 The Command Line
The command line is a typical (topical) way of controlling an editor on character driven systems.
It has some advantages over menus in terms of access speed, but it is not desirable from a user
interface point of view. ne has a command line that should be used whenever strange features have

18 ne’s manual

to be accessed, or whenever you want to use a command that you are familiar with and that is not
bound to any key.

You have two ways to access the command line: by activating the menu and typing a colon (‘:’)
or by typing CONTROL-K (or any key that is bound to the Exec command; see Section 4.12.4 [Exec],
page 55). The first method will work regardless of any key binding configuration if you activate the
menus with the ESCAPE key since that key cannot be reconfigured. Of course, there is also a menu
entry that does the same job.

Once you activate the command line, the status bar will turn into an input line (see Section 3.3
[The Input Line], page 14) with a ‘Command:’ prompt waiting for you to do a long input. In other
words, you can now type any command (possibly with arguments), and when you press RETURN,
the command will be executed.

If the command you specify does not appear in ne’s internal tables, it is considered to be the
name of a macro. See Section 2.6 [Basic Macros], page 7, for details.

3.5 The Requester
In various situations, ne needs to ask you to choose one string from several (where “several” can
mean a lot). For this kind of event, the requester is issued. The requester displays the strings in
as many columns as possible and lets you move with the cursor from one string to another. The
strings can fill many screens, which are handled as consecutive pages. Most navigation keys work
exactly as in normal editing. This is true even of custom key bindings. Thus, for instance, you
can page up and down through the list with CONTROL-P and CONTROL-N (in the standard keyboard
configuration).

A special feature is bound to printing characters: the requester progressively advances to entries
that match the characters you type without regard to case. You can use BACKSPACE to incremen-
tally undo your matched characters. This progressive matching works in two modes which you can
switch between on the fly with either the INSERT or DELETE key. In the default mode, the cursor
indicating your current selection simply advances to the next matching entry (if there is one). In the
other mode, all entries which don’t match the characters you’ve entered are removed from the list
so you only see the matching entries. The BACKSPACE key incrementally returns them to your list
as your match becomes less specific. You can switch between the two modes as often as you wish
while searching for your desired entry. This lets you quickly navigate large lists to get to the entries
you really want.

One example of a requester is the list of commands appearing when you use the Help command.
Another is the list of document words matching a prefix given to the AutoComplete command. A
third example is the file requester that ne issues whenever a file operation is going to take place.
In this case, pressing RETURN while on a directory name will enter that directory and refresh
the requester with that directory’s entries. Note also that, should the requester take too long to
appear, you can interrupt the directory scanning with CONTROL-\. However, the listing will likely
be incomplete.

Yet another example of a requester is the list of documents you currently have open. This re-
quester is displayed when you use the Select... entry from the Documents menu, or invoke the
SelectDoc command with the F4 key. Documents with unsaved changes will be bold (if your
terminal supports bold) and marked with an asterisk.

These documents are generally listed in the order they were opened. However, in this requester
you can reorder these documents by using the keys bound to the NextDoc and PrevDoc commands,

Chapter 3: Reference 19

usually F2 and F3. Any document reordering and selection will only take effect if you exit the
requester with the RETURN key.

You can also save named documents and close unmodified documents without leaving the
SelectDoc requester by using the key bound to the Save and CloseDoc commands respectively,
usually CONTROL-S and CONTROL-Q. You can’t close the last document this way because it would
cause ne to exit.

Regardless of the type of requester, you can confirm your selection with RETURN just as with
the input line (see Section 3.3 [The Input Line], page 14), or you can escape the requester with-
out making a selection with F1 or the ESCAPE key (or whatever has been bound to the Escape

command).
Moreover, if you are selecting a file name through the requester there is a third possibility: by

escaping with the TAB key, the file or directory name that the cursor is currently on will be copied
to the input line. This allows you to choose an existing name with TAB and modify the name on the
input line before hitting RETURN.

Note that there are two items that always appear at the top of a file requester: ‘./’ and ‘../’.
The first one represents the current directory and can be used to force a reread of the directory. The
second one represents the parent directory and can be used to move up by one directory level.

The path to file names and directories selected through the requester will be relative to the current
directory, i.e. the directory you were in when you invoked ne. The exception is when you’ve entered
a path on the command line that starts with a /, then hit TAB to invoke the requester. In that case the
path eventually returned by the requester will be an absolute path. (Note that you can change the
current document’s name from relative to absolute or absolute to relative with the NameConvert

command either on the command line or from the Extras menu.)
All requesters present their selections by default in “row major order,” which means the second

string is on the same row as the first but to its right, at the top of the second column, and so on
across each row before filling in the next row down. If you prefer your lists displayed in “column
major order”—the first, second, and third strings are in the same column and each column is filled
before starting on the next column to the right—then use the RequestOrder command to switch
that preference. The setting will be stored in your default preferences the next time you save them.
See Section 4.9 [Preferences Commands], page 40.

3.6 Syntax Highlighting
Syntax highlighting is particularly useful for programming language text or other types of docu-
ments which have a strictly defined syntax. Colors indicate different syntactic categories of text
according to the syntax definition in use.

Syntax definitions are stored in separate files. ne comes with a suite of syntax definitions for
many popular programming languages and other common text file types. When you load a file, ne
selects the appropriate syntax definition as determined by the filename extension in much the same
way autoprefs are loaded. (See Section 5.3 [Virtual Extensions], page 61 for ways to override a file’s
extension based on file contents.) It also contains a built-in table of common filename extensions
that share the same syntax definitions. For example, both ‘cbl’, and ‘cob’ files use the ‘cobol’
definition. See the Section 4.9.30 [Syntax], page 47 command for the complete list of built-in
extension mappings.

If there is no matching syntax definition for the filename extension, or if the document you
are editing has no filename yet, or you just want to try a different syntax definition, you can load

20 ne’s manual

and use the syntax definition of your choice with the Syntax command. It takes the syntax name
as a parameter. For example, the name “c” works for C syntax files with extensions ‘.c’, ‘.h’,
‘c++’, etc. ne searches for the specified syntax definition file in the ‘syntax’ subdirectory of your
‘˜/.ne’ directory first. If not found there, ne then looks in the ‘syntax’ subdirectory of ne’s global
directory for the syntax definition file. See Section 3.1 [Arguments], page 11.

With no parameter, the Syntax command prompts you for a syntax to load, the offered default
being the currently loaded syntax if there is one. Use the TAB key at that prompt to get a list of
available syntax recognizers.

One syntax definition you may find useful for any type of text file is called simply ‘tabs’. It
highlights the TABs in your text so you can distinguish them from regular spaces.

You can create your own syntax definitions and store them in your ‘˜/.ne/syntax’ directory
(actually, modifying the colors of an existing definition is much easier; see Chapter 6 [Hints and
Tricks], page 63). A complete explanation of syntax specifications is beyond the scope of this
document, but the existing definition files should prove to be useful examples. In particular, the
‘syntax/c.jsf’ file contains some particularly helpful comments. Syntax definition files have a
‘.jsf’ extension. Do not include that extension when using the Syntax command.

Your own syntax recognizers will be preferred over the global recognizers. If you use the TAB
key at the syntax prompt to display the requester of extant recognizers, yours will be marked with
an asterisk and bold if your terminal supports that.

Syntax highlighting does incur a slight penalty in memory used per line of text, and it also
consumes some CPU resources. For small to medium sized files you’ll probably never notice. But
for extremely large files—on the order of the size of your system’s RAM—the difference could
be significant. If you invoke ne with the --no-syntax parameter, ne will disable the syntax
highlighting mechanism entirely, freeing up the memory and CPU otherwise consumed. (Note that
if you are that tight on memory, you may need to disable the undo buffer as well. See Section 4.7.4
[DoUndo], page 38.) On the other hand, ne will silently disable syntax highlighting on files longer
than ten million bytes, but you can force it using the Syntax command.

Note that there is a basic difference between these two cases: when you use the --no-syntax
parameter, the additional memory is not allocated at all, and syntax highlighting cannot be enabled
without restarting ne. On the contrary, the automatic disabling for long files keeps only ne from
computing the actual highlighting, and it can be overriden as explained above.

ne uses code from another editor—the GPL-licensed joe—for its syntax highlighting capabil-
ities. Because of this fact, the syntax definition files are identical, even to the ‘.jsf’ extension,
which is an acronym for “Joe’s Syntax File”. It’s possible that if both joe and ne are installed on
your system that they share the same syntax file directory.

3.7 Menus
ne’s menus are extremely straightforward. The suggested way of learning their use is by trial and
error, with a peek here and there at this manual when some doubts arise.

You activate menus with the F1 key, or in case your keyboard does not have such a key, ESCAPE,
ESCAPE-ESCAPE or any key that is bound to the Escape command. Move around the menus
pressing with the cursor keys, the PAGE UP and PAGE DOWN keys (which move to the first or last
menu item in a menu), and the HOME and END keys (which move to the first or last menus). You
can also move around menus and menu items by pressing the alphabetic keys; a lower case letter

Chapter 3: Reference 21

will move to the first item in the current menu whose name starts with the given letter; an upper case
letter will move to the first menu whose name starts with the given letter.

If you’ve activated the menus and you want to switch immediately to the command line, press
the : key. The menus will clear and you’ll find yourself on the command line. See Section 3.4 [The
Command Line], page 15.

Each menu item of ne’s standard menu corresponds to a single command. In explaining what
each menu item allows you to do, we shall simply refer you to the section that explains the command
relative to the menu item.

If you plan to change ne’s menu (see Section 5.2 [Changing Menus], page 60), you should take
a look at the file ‘default.menus’ that comes with ne’s distribution. It contains a complete menu
configuration that clones the standard one.

3.7.1 File
The File menu contains standard items that allow loading and saving files. Quitting ne (which
doesn’t save changes) or exiting ne (which does save changes) is also possible.

‘Open...’ See Section 4.2.1 [Open], page 28.

‘Open New...’
See Section 4.2.2 [OpenNew], page 28.

‘Save’ See Section 4.2.3 [Save], page 28.

‘Save As...’
See Section 4.2.4 [SaveAs], page 28.

‘Save All’
See Section 4.2.5 [SaveAll], page 29.

‘Quit Now’
See Section 4.3.1 [Quit], page 29.

‘Save&Exit’
See Section 4.3.2 [Exit], page 29.

‘About’ See Section 4.12.1 [About], page 55.

3.7.2 Documents
The Documents menu contains commands that create new documents, destroy them, and browse
through them.

‘New’ See Section 4.3.3 [NewDoc], page 29.

‘Clear’ See Section 4.3.4 [Clear], page 29.

‘Close’ See Section 4.3.5 [CloseDoc], page 29.

‘Next’ See Section 4.3.6 [NextDoc], page 30.

‘Prev’ See Section 4.3.7 [PrevDoc], page 30.

‘Select...’
See Section 4.3.8 [SelectDoc], page 30.

22 ne’s manual

3.7.3 Edit
The Edit menu contains commands related to cutting and pasting text.

‘Mark Block’
See Section 4.4.1 [Mark], page 30.

‘Cut’ See Section 4.4.4 [Cut], page 31.

‘Copy’ See Section 4.4.3 [Copy], page 31.

‘Paste’ See Section 4.4.5 [Paste], page 31.

‘Erase’ See Section 4.4.7 [Erase], page 31.

‘Through’ See Section 4.4.12 [Through], page 32.

‘Delete Line’
See Section 4.11.9 [DeleteLine], page 55.

‘Delete EOL’
See Section 4.11.10 [DeleteEOL], page 55.

‘Mark Vert’
See Section 4.4.2 [MarkVert], page 30.

‘Paste Vert’
See Section 4.4.6 [PasteVert], page 31.

‘Open Clip...’
See Section 4.4.9 [OpenClip], page 32.

‘Save Clip...’
See Section 4.4.10 [SaveClip], page 32.

3.7.4 Search
The Search menu contains commands related to searching for specific contents or locations within
a document.

‘Find...’ See Section 4.5.1 [Find], page 33.

‘Find RegExp...’
See Section 4.5.2 [FindRegExp], page 33.

‘Replace...’
See Section 4.5.3 [Replace], page 33.

‘Replace Once...’
See Section 4.5.4 [ReplaceOnce], page 34.

‘Replace All...’
See Section 4.5.5 [ReplaceAll], page 34.

‘Repeat Last’
See Section 4.5.6 [RepeatLast], page 34.

‘Goto Line...’
See Section 4.10.5 [GotoLine], page 49.

Chapter 3: Reference 23

‘Goto Col...’
See Section 4.10.6 [GotoColumn], page 50.

‘Goto Mark...’
See Section 4.10.7 [GotoMark], page 50.

‘Match Bracket’
See Section 4.5.7 [MatchBracket], page 34.

‘Set Bookmark’
See Section 4.10.26 [SetBookmark], page 52.

‘Unset Bookmark’
See Section 4.10.28 [UnsetBookmark], page 53.

‘Goto Bookmark’
See Section 4.10.27 [GotoBookmark], page 53.

3.7.5 Macros
The Macros menu contains commands related to creating and using macros.

‘Record’ See Section 4.6.1 [Record], page 36.

‘Stop’ See Section 4.6.1 [Record], page 36.

‘Replace...’
See Section 4.5.3 [Replace], page 33.

‘Play Once’
‘Play Many...’

See Section 4.6.2 [Play], page 36.

‘Play Macro...’
See Section 4.6.3 [Macro], page 36.

‘Open Macro...’
See Section 4.6.4 [OpenMacro], page 37.

‘Save Macro...’
See Section 4.6.5 [SaveMacro], page 37.

3.7.6 Extras
This menu contains a few special items that don’t fit in obvious ways into other menus.

‘Exec...’ See Section 4.12.4 [Exec], page 55.

‘Suspend’ See Section 4.12.9 [Suspend], page 56.

‘Help...’ See Section 4.12.6 [Help], page 56.

‘Refresh’ See Section 4.12.8 [Refresh], page 56.

‘Undo’ See Section 4.7.1 [Undo], page 37.

‘Redo’ See Section 4.7.2 [Redo], page 37.

‘Undel Line’
See Section 4.7.3 [UndelLine], page 38.

24 ne’s manual

‘Center’ See Section 4.8.1 [Center], page 38.

‘Shift Right’
‘Shift Left’

See Section 4.4.8 [Shift], page 31.

‘Paragraph’
See Section 4.8.2 [Paragraph], page 39.

‘Adjust View’
‘Center View’

See Section 4.10.23 [AdjustView], page 52.

‘ToUpper’ See Section 4.8.3 [ToUpper], page 39.

‘ToLower’ See Section 4.8.4 [ToLower], page 39.

‘Capitalize’
See Section 4.8.5 [Capitalize], page 39.

3.7.7 Navigation
The Navigation menu contains commands related moving around in a document.

‘Move Left’
See Section 4.10.1 [MoveLeft], page 49.

‘Move Right’
See Section 4.10.2 [MoveRight], page 49.

‘Line Up’ See Section 4.10.3 [LineUp], page 49.

‘Line Down’
See Section 4.10.4 [LineDown], page 49.

‘Prev Page’
See Section 4.10.8 [PrevPage], page 50.

‘Next Page’
See Section 4.10.9 [NextPage], page 50.

‘Page Up’ See Section 4.10.10 [PageUp], page 50.

‘Page Down’
See Section 4.10.11 [PageDown], page 50.

‘Start Of File’
See Section 4.10.19 [MoveSOF], page 51.

‘End Of File’
See Section 4.10.18 [MoveEOF], page 51.

‘Start Of Line’
See Section 4.10.15 [MoveSOL], page 51.

‘End Of Line’
See Section 4.10.14 [MoveEOL], page 51.

Chapter 3: Reference 25

‘Top Of Screen’
See Section 4.10.16 [MoveTOS], page 51.

‘Bottom Of Screen’
See Section 4.10.17 [MoveBOS], page 51.

‘Incr Up’ See Section 4.10.21 [MoveIncUp], page 51.

‘Incr Down’
See Section 4.10.22 [MoveIncDown], page 52.

‘Prev Word’
See Section 4.10.12 [PrevWord], page 50.

‘Next Word’
See Section 4.10.13 [NextWord], page 51.

3.7.8 Prefs
The Prefs menu contains commands related to setting, storing, and using your preferred document
flags.

‘Tab Size...’
See Section 4.9.13 [TabSize], page 43.

‘Tabs as Spaces’
See Section 4.9.14 [Tabs], page 44.

‘Insert/Over’
See Section 4.9.4 [Insert], page 42.

‘Free Form’
See Section 4.9.6 [FreeForm], page 42.

‘Status Bar’
See Section 4.9.9 [StatusBar], page 43.

‘Hex Code’
See Section 4.9.10 [HexCode], page 43.

‘Fast GUI’
See Section 4.9.5 [FastGUI], page 42.

‘Word Wrap’
See Section 4.8.7 [WordWrap], page 40.

‘Right Margin’
See Section 4.8.6 [RightMargin], page 39.

‘Auto Indent’
See Section 4.8.8 [AutoIndent], page 40.

‘Request Order’
See Section 4.9.8 [RequestOrder], page 42.

‘Preserve CR’
See Section 4.9.19 [PreserveCR], page 45.

26 ne’s manual

‘Save CR/LF’
See Section 4.9.20 [CRLF], page 45.

‘Load Prefs...’
See Section 4.9.24 [LoadPrefs], page 46.

‘Save Prefs...’
See Section 4.9.25 [SavePrefs], page 46.

‘Load AutoPrefs’
See Section 4.9.26 [LoadAutoPrefs], page 47.

‘Save AutoPrefs’
See Section 4.9.27 [SaveAutoPrefs], page 47.

‘Save Def Prefs’
See Section 4.9.28 [SaveDefPrefs], page 47.

3.8 Regular Expressions
Regular expressions are a powerful way of specifying complex search and replace operations. ne
supports the full regular expression syntax on US-ASCII and 8-bit documents, but has to impose
a restriction on character sets when searching in UTF-8 text. See Section 3.11 [UTF-8 Support],
page 25.

3.8.1 Syntax
The following section is taken (with minor modifications) from the GNU regular expression library
documentation and is Copyright c© Free Software Foundation.

A regular expression describes a set of strings. The simplest case is one that describes a particular
string; for example, the string ‘foo’ when regarded as a regular expression matches ‘foo’ and
nothing else. Nontrivial regular expressions use certain special constructs so that they can match
more than one string. For example, the regular expression ‘foo|bar’ matches either the string
‘foo’ or the string ‘bar’; the regular expression ‘c[ad]*r’ matches any of the strings ‘cr’, ‘car’,
‘cdr’, ‘caar’, ‘cadddar’ and all other such strings with any number of ‘a’’s and ‘d’’s.

Regular expressions have a syntax in which a few characters are special constructs and the rest
are ordinary. An ordinary character is a simple regular expression which matches that character and
nothing else. The special characters are ‘$’, ‘ˆ’, ‘.’, ‘*’, ‘+’, ‘?’, ‘[’, ‘]’ , ‘(’, ‘)’ and ‘\’. Any
other character appearing in a regular expression is ordinary, unless a ‘\’ precedes it.

For example, ‘f’ is not a special character, so it is ordinary, and therefore ‘f’ is a regular expres-
sion that matches the string ‘f’ and no other string. (It does not match the string ‘ff’.) Likewise,
‘o’ is a regular expression that matches only ‘o’.

Any two regular expressions a and b can be concatenated. The result is a regular expression that
matches a string if a matches some amount of the beginning of that string and b matches the rest of
the string.

As a simple example, we can concatenate the regular expressions ‘f’ and ‘o’ to get the regular
expression ‘fo’, which matches only the string ‘fo’. Still trivial.

Note: special characters are treated as ordinary ones if they are in contexts where their special
meanings make no sense. For example, ‘*foo’ treats ‘*’ as ordinary since there is no preceding

Chapter 3: Reference 27

expression on which the ‘*’ can act. It is poor practice to depend on this behaviour; better to quote
the special character anyway, regardless of where is appears.

The following are the characters and character sequences that have special meaning within reg-
ular expressions. Any character not mentioned here is not special; it stands for exactly itself for the
purposes of searching and matching.

‘.’ is a special character that matches anything except a newline. Using concatenation,
we can make regular expressions like ‘a.b’, which matches any three-character string
which begins with ‘a’ and ends with ‘b’.

‘*’ is not a construct by itself; it is a suffix, which means the preceding regular expression
is to be repeated as many times as possible. In ‘fo*’, the ‘*’ applies to the ‘o’, so
‘fo*’ matches ‘f’ followed by any number of ‘o’’s.
The case of zero ‘o’’s is allowed: ‘fo*’ does match ‘f’.
‘*’ always applies to the smallest possible preceding expression. Thus, ‘fo*’ has a
repeating ‘o’, not a repeating ‘fo’.

‘+’ ‘+’ is like ‘*’ except that at least one match for the preceding pattern is required for ‘+’.
Thus, ‘c[ad]+r’ does not match ‘cr’ but does match anything else that ‘c[ad]*r’
would match.

‘?’ ‘?’ is like ‘*’ except that it allows either zero or one match for the preceding pattern.
Thus, ‘c[ad]?r’ matches ‘cr’ or ‘car’ or ‘cdr’, and nothing else.

‘[...]’ ‘[’ begins a character set, which is terminated by a ‘]’. In the simplest case, the
characters between the two form the set. Thus, ‘[ad]’ matches either ‘a’ or ‘d’, and
‘[ad]*’ matches any string of ‘a’’s and ‘d’’s (including the empty string), from which
it follows that ‘c[ad]*r’ matches ‘car’, et cetera.
Character ranges can also be included in a character set, by writing two characters
with a ‘-’ between them. Thus, ‘[a-z]’ matches any lower-case letter. Ranges may
be intermixed freely with individual characters, as in ‘[a-z$%.]’, which matches any
lower case letter or ‘$’, ‘%’ or period.
Note that the usual special characters are not special any more inside a character set. A
completely different set of special characters exists inside character sets: ‘]’, ‘-’ and
‘ˆ’. As ‘\’ is not special inside character sets, you cannot use the shortcuts ‘\s’ or
‘\w’ there.
To include a ‘]’ in a character set, you must make it the first character. For example,
‘[]a]’ matches ‘]’ or ‘a’. To include a ‘-’, you must use it in a context where it
cannot possibly indicate a range: that is, as the first character, or immediately after a
range.
Note that when searching in UTF-8 text, a character set may contain US-ASCII char-
acters only.

‘[ˆ ...]’ ‘[ˆ’ begins a complement character set, which matches any character except the ones
specified. Thus, ‘[ˆa-z0-9A-Z]’ matches all characters except letters and digits.
Also in this case, when searching in UTF-8 text a complemented character set may
contain US-ASCII characters only.
‘ˆ’ is not special in a character set unless it is the first character. The character follow-
ing the ‘ˆ’ is treated as if it were first (it may be a ‘-’ or a ‘]’).

28 ne’s manual

‘ˆ’ is a special character that matches the empty string – but only if at the beginning of
a line in the text being matched. Otherwise it fails to match anything. Thus, ‘ˆfoo’
matches a ‘foo’ that occurs at the beginning of a line.

‘$’ is similar to ‘ˆ’ but matches only at the end of a line. Thus, ‘xx*$’ matches a string of
one or more ‘x’’s at the end of a line.

‘\’ has two functions: it quotes the above special characters (including ‘\’), and it intro-
duces additional special constructs.
Because ‘\’ quotes special characters, ‘\$’ is a regular expression that matches only
‘$’, and ‘\[’ is a regular expression that matches only ‘[’, and so on.
For the most part, ‘\’ followed by any character matches only that character. How-
ever, there are several exceptions: characters which, when preceded by ‘\’, are special
constructs. Such characters are always ordinary when encountered on their own.

‘|’ specifies an alternative. Two regular expressions a and b with ‘|’ in between form an
expression that matches anything that either a or b will match.
Thus, ‘foo|bar’ matches either ‘foo’ or ‘bar’ but no other string.
‘|’ applies to the largest possible surrounding expressions. Only a surrounding ‘(...
)’ grouping can limit the grouping power of ‘|’.

‘(...)’ is a grouping construct that serves three purposes:
1. To enclose a set of ‘|’ alternatives for other operations. Thus, ‘(foo|bar)x’

matches either ‘foox’ or ‘barx’.
2. To enclose a complicated expression for the postfix ‘*’ to operate on. Thus,

‘ba(na)*’ matches ‘bananana’ et cetera, with any (zero or more) number of
‘na’’s.

3. To mark a matched substring for future reference.

This last application is not a consequence of the idea of a parenthetical grouping; it is
a separate feature that happens to be assigned as a second meaning to the same ‘(...
)’ construct because there is no conflict in practice between the two meanings. Here
is an explanation of this feature:

‘\digit’ After the end of a ‘(...)’ construct, the matcher remembers the beginning and end of
the text matched by that construct. Then, later on in the regular expression, you can use
‘\’ followed by digit to mean “match the same text matched the digit’th time by the ‘(
...)’ construct.” The ‘(...)’ constructs are numbered in order of commencement
in the regexp.
The strings matching the first nine ‘(...)’ constructs appearing in a regular expres-
sion are assigned numbers 1 through 9 in order of their beginnings. ‘\1’ through ‘\9’
may be used to refer to the text matched by the corresponding ‘(...)’ construct.
For example, ‘(.+)\1’ matches any non empty string that is composed of two identi-
cal halves. The ‘(.+)’ matches the first half, which may be anything non empty, but
the ‘\1’ that follows must match the same exact text.

‘\b’ matches the empty string, but only if it is at the beginning or end of a word. Thus,
‘\bfoo\b’ matches any occurrence of ‘foo’ as a separate word. ‘\bball(s|)\b’
matches ‘ball’ or ‘balls’ as a separate word.

Chapter 3: Reference 29

‘\B’ matches the empty string, provided it is not at the beginning or end of a word.

‘\<’ matches the empty string, but only if it is at the beginning of a word.

‘\>’ matches the empty string, but only if it is at the end of a word.

‘\s’ matches any white-space character in US-ASCII. These are TAB, CONTROL-J (line
feed), CONTROL-k (vertical tab), CONTROL-L (form feed), CONTROL-M (carriage re-
turn), and space.

‘\w’ matches any word-constituent character. These are US-ASCII letters, numbers and the
underscore, independently of the document encoding.

‘\W’ matches any character that is not a word-constituent.

3.8.2 Replacing regular expressions
Also the replacement string has some special feature when doing a regular expression search and
replace. Exactly as during the search, ‘\’ followed by digit stands for “the text matched the digit’th
time by the ‘(...)’ construct in the search expression”. Moreover, ‘\0’ represent the whole string
matched by the regular expression. Thus, for instance, the replace string ‘\0\0’ has the effect of
doubling any string matched.

Another example: if you search for ‘(a+)(b+)’, replacing with ‘\2x\1’, you will match any
string composed by a series of ‘a’’s followed by a series of ‘b’’s, and you will replace it with the
string obtained by moving the ‘a’ in front of the ‘b’’s, adding moreover ‘x’ inbetween. For instance,
‘aaaab’ will be matched and replaced by ‘bxaaaa’.

Note that the backslash character can escape itself. Thus, to put a backslash in the replacement
string, you have to use ‘\\’.

3.9 Automatic Preferences
Automatic preferences let you set up a custom configuration that is automatically used whenever
you open a file with a given extension. For instance, you may prefer a TAB size of three when editing
C sources, but eight could be more palatable when writing electronic mail.

The use of autoprefs is definitely straightforward. You simply use the ‘Save AutoPrefs’ menu
item (or the SaveAutoPrefs command; see Section 4.9.27 [SaveAutoPrefs], page 47) when the
current document has the given extension and the current configuration suits your tastes. The inter-
nal state of a series of options will be recorded as a macro containing commands that reproduce the
current configuration. The macro is then saved in the ‘˜/.ne’ directory (which is created if nec-
essary) with the name given by the extension, postfixed with ‘#ap’. Thus, the C sources automatic
preferences file will be named ‘c#ap’, the one for TEX files ‘tex#ap’, and so on.

Macros are generated with short or long command names depending on the status of the verbose
macros flag. See Section 4.9.18 [VerboseMacros], page 45.

Automatic preferences files are loaded and executed whenever a file with a known extension is
opened. Note that you can manually edit such files, and even insert commands, but any command
that does something other than setting a flag will be rejected, and an error message will be issued.

30 ne’s manual

3.10 Emergency Save
When ne is interrupted by an abnormal event (for instance, the crash of your terminal), it will try
to save all unsaved documents in its current directory. Named documents will have their names
prefixed with a ‘#’. Unnamed documents will be given names made up of hexadecimal numbers
obtained by some addresses in memory that will make them unique.

3.11 UTF-8 Support
ne can manipulate UTF-8 files and supports UTF-8 when communicating with the user. At startup,
ne fetches the system locale description, and checks whether it contains the string ‘utf8’ or
‘utf-8’. In this case, it starts communicating with the user using UTF-8. This behaviour can be
modified either using a suitable command line option (see see Section 3.1 [Arguments], page 11),
or using Section 4.9.33 [UTF8IO], page 49. This makes it possible to display and read from the
keyboard a wide range of characters.

Independently of the input/output encoding, ne keeps track of the encoding of each document.
ne does not try to select a particular coding on a document, unless it is forced to do so, for instance
because a certain character is inserted. Once a document has a definite encoding, however, it keeps
it forever.

More precisely, every document may be in one of three encoding modes: US-ASCII, when it is
entirely composed of US-ASCII characters; 8-bit, if it contains also other characters, but it is not
UTF-8 encoded; and finally, UTF-8, if it is UTF-8-encoded.

The behaviour of ne in US-ASCII and 8-bit mode is similar to previous versions: each byte in
the document is considered a separate character.

There are, however, two important differences: first, if I/O is not UTF-8 encoded, any encoding
of the ISO-8859 family will work flawlessly, as ne merely reads bytes from the keyboard and
displays bytes on the screen. On the contrary, in the case of UTF-8 input/output ne must take a
decision as to which encoding is used for non-UTF-8 documents, and presently this is hardwired to
ISO-8859-1. Second, 8-bit documents use localized casing and character type functions. This means
that case-insensitive searches or case foldings will work with, say, Cyrillic characters, provided that
your locale is set correctly.

In UTF-8 mode, instead, ne interprets the bytes in the document in a different way—several
bytes may encode a single character. The whole process is completely transparent to the user, but if
you really want to look at the document content, you can switch to 8-bit mode (see see Section 4.9.31
[UTF8], page 48).

For most operations, UTF-8 support should be transparent. However, in some cases, in particular
when mixing documents with different encodings, ne will refuse to perform certain operations
because of incompatible encodings.

The main limitation of UTF-8 documents is that when searching for a regular expression in a
UTF-8 text, character sets may only contain US-ASCII characters (see see Section 3.8 [Regular
Expressions], page 22). You can, of course, partially emulate a full UTF-8 character set implemen-
tation specifying the possible alternatives using ‘|’ (but you have no ranges).

Chapter 4: Commands 31

4 Commands

Everything ne can do is specified through a command. Commands can be manually typed on the
command line, bound to a key, to a menu item, or grouped into macros for easier manipulation. If
you want to fully exploit the power of ne, you will be faced sooner or later with using commands
directly.

4.1 General Guidelines
Every command in ne has a long and a short name. Except in a very few cases, the short name is
given by two or three letters that are the initials of the words that form the long name. For instance,
SearchBack has short name SB, SaveDefPrefs has the short name SDP, and AdjustView’s short
name is AV. There are some exceptions however. The most frequently used commands such as Exit
have one-letter short names (X). Also some commands use a different short name to avoid clashes
with a more common command’s short name. For example, StatusBar’s short name is ST rather
than SB to avoid clashes with SearchBack’s short name.

A command always has at most one argument. This is a chosen limitation that allows ne’s
parsing of commands and macros to be very fast. Moreover, it nullifies nearly all problems related
to delimiters, escape characters, and the like. The unique argument can be a number, a string, or a
flag modifier. You can easily distinguish these three cases even without this manual by looking at
what the Help command says about the given command. Note that when a command’s argument is
enclosed in square brackets, it is optional.

Strings are general purpose arguments. Numbers are used to modify internal parameters, such
as the size of a TAB. A flag modifier is an optional number that is interpreted as follows:

• 0 means clearing the flag;

• 1 (or any positive number) means setting the flag;

• no number means toggling the flag.

Thus, StatusBar 1 will activate that status bar, while I will toggle insert/overstrike. This
design choice is due to the fact that most of the time during interactive editing you need to change
a flag. For instance, you may be in insert mode and you want to overstrike, or vice versa. Absolute
settings (those with a number) are useful essentially for macros. It is reasonable to use the fastest
approach for the most frequent interactive event. When a number or a string is required and the
argument is optional, most of the time you will be prompted to type the argument on the command
line.

As for the input line, for numeric arguments you can choose between decimal, octal and hex-
adecimal notation in the standard way: a number starting with ‘0’ is considered in octal, a number
starting with ‘0x’ is considered in hexadecimal, and in all other cases decimal base is assumed.

When a number represents how many times ne should repeat an action, it is always understood
that the command will terminate when the conditions for applying it are no longer true. For instance,
the Paragraph command accepts the number of paragraphs to format. But if not enough paragraphs
exists in the text, only the available ones will be formatted.

This easily allows performing operations on an entire document by specifying preposterously
huge numbers as arguments. ToUpper 200000000 will make all the words in the document upper
case. (At least, one would hope so!) Note that this is much faster than recording a macro with the

32 ne’s manual

command ToUpper in it and playing it many times because in the former case the command has to
be parsed just one time.

In any case, if a macro or a repeated operation takes too long, you can stop it using the interrupt
key (CONTROL-\).

To handle situations such as an argument string starting with a space, ne implements a simple
mechanism whereby you can enclose any string argument in double quotes. If the first non-blank
character after the command and last character of the command line are double quotes, the quotes
will be removed and whatever is left will be used as the string argument. For example, the Find

command to find a space could be entered on the command line or in a macro as Find " ". The only
case needing special treatment is when a string starts and ends with double quotes. The command
Find ""quote"" would locate the next occurrence of the string ‘"quote"’ (including the dou-
ble quotes). However, Find onequote" wouldn’t require special treatment because the command
argument doesn’t both start and end with a double quote.

4.2 File Commands
These commands allow opening and saving files. They all act in the context of the current document
(i.e., the document displayed when the command is issued).

4.2.1 Open
Syntax: Open [filename]
Abbreviation: O
replaces the contents of the current document with that of the file specified by the filename string.
(To load filename’s content into a new document without changing the current document, see Sec-
tion 4.2.2 [OpenNew], page 28.) The current document’s macro, search, and replace strings are
preserved.

If the optional filename argument is not specified, the file requester is opened, and you are
prompted to select a file. (You can inhibit the file requester opening by using the NoFileReq

command; see Section 4.9.7 [NoFileReq], page 42.)
If you escape from the file requester, you can input the file name on the command line, the

default being the current document name, if available.
If the current document is marked as modified at the time the command is issued, you have to

confirm the action.

4.2.2 OpenNew
Syntax: OpenNew [filename]
Abbreviation: ON
creates a new document and loads into it the contents of the file specified by the optional filename
string. This new document will inherit the macro, search, and replace strings from the current
document.

If filename is unspecified, the file requester behaves the same as for the Open command; see
Section 4.2.1 [Open], page 28.

4.2.3 Save
Syntax: Save
Abbreviation: S

Chapter 4: Commands 33

saves the current document using its default file name.
If the current document is unnamed, the file requester will open and you will be prompted to

select a file. (You can inhibit the file requester opening by using the NoFileReq command; see
Section 4.9.7 [NoFileReq], page 42.)

If you escape from the file requester, you can input the file name on the command line.
If the file has been modified since the current document was loaded or last saved (perhaps by

another user), ne will warn you before overwriting the updated file. If the current document’s read
only flag is set, ne will prompt you before attempting to save it.

4.2.4 SaveAs
Syntax: SaveAs [filename]
Abbreviation: SA
saves the current document using the specified string as the file name.

If the optional filename argument is not specified, the file requester will open and you will be
prompted to select a file. (You can inhibit the file requester opening by using the NoFileReq

command; see Section 4.9.7 [NoFileReq], page 42.)
If you escape from the file requester, you can enter the file name on the input line, the default

being the current document name, if available.
If the file has been modified since the current document was loaded or last saved (perhaps by

another user), ne will warn you before overwriting the updated file. If the current document’s read
only flag is set, ne will prompt you before attempting to save it.

4.2.5 SaveAll
Syntax: SaveAll
Abbreviation: SL
saves all modified documents. If any modified documents cannot be saved, the action is suspended
and an error message is issued. Note that only named documents can be saved, so SaveAll will
report an error if you have any modified unnamed documents. Other reasons SaveAll may fail
include: if any of the modified documents’ corresponding files have been updated since they were
loaded or last saved, or if any modified documents’ read only flags are set.

4.3 Document Commands
These commands allow manipulation of the circular list of documents in ne.

4.3.1 Quit
Syntax: Quit
Abbreviation: Q
closes all documents and exits. If any documents are modified, you have to confirm the action.

4.3.2 Exit
Syntax: Exit
Abbreviation: X
saves all modified documents, closes them and exits. If any documents cannot be saved, the action
is suspended and an error message is issued and no documents are closed. Note that only named

34 ne’s manual

documents can be saved, so Exit will report an error if you have any modified unnamed documents.
Like SaveAll, Exit will not save a document if its corresponding file has been modified since the
document was loaded or last saved, or if its read only flag is set, in which cases an error is reported
and no documents are closed.

4.3.3 NewDoc
Syntax: NewDoc
Abbreviation: N

creates a new, empty, unnamed document that becomes the current document. The position of
the document in the document list is just after the current document. The preferences of the new
document are a copy of the preferences of the current document.

4.3.4 Clear
Syntax: Clear
Abbreviation: CL

destroys the contents of the current document and of its undo buffer. Moreover, the document
becomes unnamed. If your current document is marked as modified, you have to confirm the action.

4.3.5 CloseDoc
Syntax: CloseDoc
Abbreviation: CD

closes the current document. The document is removed from ne’s list and, if it is the only existing
document, ne exits. If the document was modified since it was last saved, you have to confirm the
action.

4.3.6 NextDoc
Syntax: NextDoc
Abbreviation: ND

sets as current document the next document in the document list.

4.3.7 PrevDoc
Syntax: PrevDoc
Abbreviation: PD

sets as current document the previous document in the document list.

4.3.8 SelectDoc
Syntax: SelectDoc
Abbreviation: SD

displays a requester containing the names of all the documents in memory. Your cursor will be on
your current document’s name, and documents with unsaved changes will be indicated with asterisks
(and bold if your terminal supports that). You select whichever document you want to become the
current document by moving your cursor to its name and hitting RETURN..

While the list of documents is displayed, you can close unmodified documents with your
CloseDoc key (CONTROL-Q), save named documents with your Save key (CONTROL-S), and you

Chapter 4: Commands 35

can alter their relative order using your NextDoc and PrevDoc keys (F2 and F3), which have the
effect of swapping your currently selected document with the next or previous document in the list,
respectively.

If you escape from the requester, the requester goes away, you are returned to your original
current document (unless you closed it!), and no reordering of documents takes place.

SelectDoc is especially useful if you have a large number of documents open or if you want to
quickly see which documents contain unsaved changes. See Section 4.3.6 [NextDoc], page 30, and
Section 4.3.7 [PrevDoc], page 30.

4.4 Clip Commands
These commands control the clipping system. A clip is a snippet of text separate from any docu-
ment, which you can save to a file or insert into a document. You can select text in a document and
copy it to a clip, optionally deleting it from your text. You can also load text directly from a file into
a clip. ne can have any number of clips, which are distinguished by an integer. Most clip commands
act on the current clip, which can be selected with ClipNumber. Clips can be copied and pasted in
two ways—normally (as lines of text) or vertically (as a rectangular block of characters).

Note that by using the Through command you can automatically pass a (possibly vertical) block
of text through any filter (such as sort under UN*X).

4.4.1 Mark
Syntax: Mark [0|1]
Abbreviation: M

sets the mark at the current position or cancels the previous mark. The mark and cursor together
define the range of text over which clips (Cut, Copy, Erase) and left and right shifts operate.

If you invoke Mark with no arguments, it will set the mark. If you specify 0 or 1, the mark will
be cancelled or set to the current position, respectively. A capital ‘M’ appears on the status bar, if the
mark is active.

4.4.2 MarkVert
Syntax: MarkVert [0|1]
Abbreviation: MV

is the same as Mark, but the region manipulated by the cut/paste commands is the rectangle having
as vertices the cursor and the mark. If you invoke MarkVert with no arguments, it will set the
mark. If you specify 0 or 1, the mark will be cancelled or set to the current position, respectively.
Moreover, a capital ‘V’, rather than a capital ‘M’, will appear on the status bar.

For example, if you have the following text:

aaaBbbccc

aaabbbccc

aaabbbCcc

and you set a vertical mark at ‘B’ then move the cursor to ‘C’, you can cut or copy all of the ‘B’s.

If you have made a vertical cut or copy, it’s very likely you will want to use PasteVert rather
than the usual Paste to reinsert the text in a rectangle. See Section 4.4.6 [PasteVert], page 31.

36 ne’s manual

4.4.3 Copy
Syntax: Copy [n]
Abbreviation: C
copies the contents of the characters lying between the cursor and the mark into the clip specified
by the optional numeric argument, the default clip being the current clip, which can be set with
the ClipNumber command; see Section 4.4.11 [ClipNumber], page 32. If the current mark was
vertical, the rectangle of characters defined by the cursor and the mark is copied instead.

4.4.4 Cut
Syntax: Cut [n]
Abbreviation: CU
acts just like Copy, but also deletes the block being copied.

4.4.5 Paste
Syntax: Paste [n]
Abbreviation: P
pastes the contents of specified clip into the current document at the cursor position. If you don’t
specify the clip number, the current clip is used; Specify which clip is current with Section 4.4.11
[ClipNumber], page 32.

4.4.6 PasteVert
Syntax: PasteVert [n]
Abbreviation: PV
vertically pastes the contents of the specified clip, the default being the current clip. Each line of the
clip is inserted on consecutive lines at the horizontal cursor position.

4.4.7 Erase
Syntax: Erase
Abbreviation: E
acts like Cut, but the block is just deleted and not copied into any clip.

4.4.8 Shift
Syntax: Shift [<|>][n][t|s]
Abbreviation: SH
shifts the text on lines between the mark and the cursor either right (‘>’) or left (‘<’) by adding or
removing white space on each line. The adjustment size, specified as an unsigned integer ‘n’, is in
units of the current tab size (‘t’) or spaces (‘s’). The defaults are ‘>’, ‘1’, and ‘t’. Adjustments
start at the left edge of a vertical mark, or column 1 otherwise. If the mark is not currently set, only
the current line is affected.

Shift will insert tab characters only if ‘s’ is not used, and both of the document’s Tabs and
ShiftTabs flags are set—in which case an upper case ‘T’ will appear in the status bar. If either of
the Tabs or ShiftTabs flags is unset (i.e there is no upper case ‘T’ in the status bar) Shift will
only insert spaces.

In the case of left shifts, if any indicated line has insufficient leading white space for the requested
adjustment to be made, then Shift reports an error and makes no changes.

Chapter 4: Commands 37

4.4.9 OpenClip
Syntax: OpenClip [filename]
Abbreviation: OC
loads the given file name as the current clip, just as if you cut or copied it from the current document;
see Section 4.4.3 [Copy], page 31.

If the optional filename argument is not specified, the file requester will open and you will be
prompted to select a file. (You can inhibit the file requester opening by using the NoFileReq

command; see Section 4.9.7 [NoFileReq], page 42.)
If you escape from the file requester, you can enter the file name on the input line.

4.4.10 SaveClip
Syntax: SaveClip [filename]
Abbreviation: SC
saves the current clip to the given file name.

If the optional filename argument is not specified, the file requester will open and you will be
prompted to select a file. (You can inhibit the file requester opening by using the NoFileReq

command; see Section 4.9.7 [NoFileReq], page 42.)
If you escape from the file requester, you can enter the file name on the input line.

4.4.11 ClipNumber
Syntax: ClipNumber [n]
Abbreviation: CN
sets the current clip number. This number is used by OpenClip and SaveClip, and by Copy, Cut
and Paste if they are called without any argument. Its default value is zero. n is limited only by
the integer size of the machine ne is running on.

If the optional argument n is not specified, you can enter it on the input line, the default being
the current clip number.

4.4.12 Through
Syntax: Through [command]
Abbreviation: T
asks the shell to execute command, piping the current block in the standard input, and replacing
it with the output of the command. This command is most useful with filters, such as sort. Its
practical effect is to pass the block through the specified filter.

Note that by selecting an empty block (or equivalently by having the mark unset) you can use
Through to insert the output of any UN*X command in your file.

If the optional argument command is not specified, you can enter it on the input line.

4.5 Search Commands
These commands control the search system. ne offers two complementary searching techniques: a
simple, fast exact matching search (optionally ignoring case), and a very flexible and powerful, but
slower, regular expression search based on the GNU regex library (again, optionally case insensi-
tive).

38 ne’s manual

4.5.1 Find
Syntax: Find [pattern]
Abbreviation: F

searches for the given pattern. The cursor is positioned on the first occurrence of the pattern, or an
error message is given. The direction and the case sensitivity of the search are established by the
value of the back search and case sensitive search flags. See Section 4.5.9 [SearchBack], page 35,
and Section 4.5.10 [CaseSearch], page 35.

If the optional argument pattern is not specified, you can enter it on the input line, the default
being the last pattern used.

4.5.2 FindRegExp
Syntax: FindRegExp [pattern]
Abbreviation: FX

searches the current document for the given extended regular expression (see Section 3.8 [Regular
Expressions], page 22) . The cursor is positioned on the first string matching the expression. The
direction and the kind of search are established by the value of the back search and case sensitive
search flags. See Section 4.5.9 [SearchBack], page 35, and Section 4.5.10 [CaseSearch], page 35.

If the optional argument pattern is not specified, you can enter it on the input line, the default
being the last pattern used.

4.5.3 Replace
Syntax: Replace [string]
Abbreviation: R

moves to the first match of the most recent find string or regular expression and prompts you for
which action to perform. You can choose among:

• replacing the string found with the given string and moving to the next match (‘Yes’);

• moving to the next match (‘No’);

• replacing the string found with the given string, and stopping the search (‘Last’);

• stopping the search immediately (‘Quit’);

• replacing all occurrences of the find string with the given string (‘All’);

• reversing the search direction (‘Backward’ or ‘Forward’); this choice will also modify the
value of the back search flag. See Section 4.5.9 [SearchBack], page 35.

Replace is mainly useful for interactive editing. ReplaceOnce, ReplaceAll and
RepeatLast are more suited to macros.

If no find string was ever specified, you can enter it on the input line. If the optional argument
string is not specified, you can enter it on the input line, the default being the last string used. When
the last search was a regular expression search, there are some special features you can use in the
replace string (see Section 3.8 [Regular Expressions], page 22) . See Section 4.5.2 [FindRegExp],
page 33.

Note that normally a search starts just one character after the cursor. However, when Replace

is invoked, the search starts at the character just under the cursor, so that you can safely Find a
pattern and Replace it without having to move back.

Chapter 4: Commands 39

Warning: when recording a macro with Section 4.6.1 [Record], page 36, there is no trace in the
macro of your interaction with ne during the replacement process. When the macro is played, you
will again have to choose which actions to perform. If you want to apply automatic replacement
of strings for a certain number of times, you should look at Section 4.5.4 [ReplaceOnce], page 34,
Section 4.5.5 [ReplaceAll], page 34, and Section 4.5.6 [RepeatLast], page 34.

4.5.4 ReplaceOnce
Syntax: ReplaceOnce [string]
Abbreviation: R1
acts just like Replace, but without any interaction with you (unless there is no find string). The first
string matched by the last search pattern, if it exists, is replaced by the given replacement string.

If the optional argument string is not specified, you can enter it on the input line, the default
being the last string used.

4.5.5 ReplaceAll
Syntax: ReplaceAll [string]
Abbreviation: RA
is similar to ReplaceOnce, but replaces all occurrences of the last search pattern between the cursor
position and the end of the document (in the direction indicated by the SearchBack flag) with the
given replacement string.

If the optional argument string is not specified, you can enter it on the input line, the default
being the last string used.

Note that a single Undo will restore all the occurrences of the search pattern replaced by
ReplaceAll. See Section 4.7.1 [Undo], page 37.

4.5.6 RepeatLast
Syntax: RepeatLast [times] [F|Find|R|Replace]
Abbreviation: RL
repeats for the given number of times the last find or replace operation (with replace we mean here
a single replace, even if the last Replace operation ended with a global substitution). If you don’t
specify either Find or Replace, it will repeat whichever one was last performed.

If any find or replace operation runs into the end of the document (in the direction indicated by
the SearchBack flag) and stops, then and only then will a RepeatLast command “wrap around”
to the other end of the document to continue the find or replace operation.

RepeatLast is especially useful for researching a given number of times, or replacing some-
thing a given number of times. The standard technique for accomplishing this is:

1. Find (or FindRegExp) the string you are interested in;
2. if you want to repeat a replace operation, ReplaceOnce with the replacement string you are

interested in;
3. now issue a RepeatLast n-1 command, where n is the number of occurrences you wanted to

skip over, or replace.

The important thing about this sequence of actions is that it will work this way even in a macro.
The Replace command cannot be used in a macro unless you really want to interact with ne during
the macro execution. Avoiding interaction during macros is the primary reason the commands
ReplaceAll and ReplaceOnce are provided.

40 ne’s manual

4.5.7 MatchBracket
Syntax: MatchBracket
Abbreviation: MB
moves the cursor to the bracket associated with the bracket the cursor is on. If the cursor is not
on a bracket, or there is no bracket associated with the current one, an error message is issued.
Recognized brackets are ‘{}’, ‘()’, ‘[]’ ‘<>’, and ‘‘’’. See Section 4.5.8 [AutoMatchBracket],
page 35.

4.5.8 AutoMatchBracket
Syntax: AutoMatchBracket [0..15]
Abbreviation: AMB
sets the auto match bracket mode. When the cursor is on a recognized bracket (‘{}’, ‘()’, ‘[]’,
‘<>’, or ‘‘’’) and the associated matching bracket is on the screen, that matching bracket will be
indicated according to the mode. The mode is either zero for no bracket matching, or the sum of 1
(altered foreground and background brightness), 2 (inverse), 4 (bold), and 8 (underline). If no mode
is specified, ne prompts you for one. The default mode is 1. See Section 4.5.7 [MatchBracket],
page 34.

4.5.9 SearchBack
Syntax: SearchBack [0|1]
Abbreviation: SB
sets the back search flag. When this flag is true, every search or replacement command is performed
backwards.

If you invoke SearchBack with no arguments, it will toggle the flag. If you specify 0 or 1, the
flag will be set to false or true, respectively. A lower case ‘b’ will appear on the status bar if the flag
is true.

Note that this flag also can be set through interactions with the Replace command. See Sec-
tion 4.5.3 [Replace], page 33.

4.5.10 CaseSearch
Syntax: CaseSearch [0|1]
Abbreviation: CS
sets the case sensitivity flag. When this flag is true, the search commands distinguish between the
upper and lower case letters. By default the flag is false.

If you invoke CaseSearch with no arguments, it will toggle the flag. If you specify 0 or 1, the
flag will be set to false or true, respectively. A lower case ‘c’ will appear on the status bar if the flag
is true.

4.5.11 AutoComplete
Syntax: AutoComplete [prefix]
Abbreviation: AC
attempts to extend the prefix using matching words from your open documents, and inserts the
extended text into your document. If the prefix can be extended unambiguously, the matching
text is immediately inserted into your document. Otherwise, ne displays a selection of all words

Chapter 4: Commands 41

in open documents that match prefix, and inserts the word you select into the current document.
Matching words from the current document display normally; those which only exist in other open
documents are bold and with a trailing asterisk. If no prefix is given on the command line, or if
AutoComplete is selected from the Extrasmenu or using a keyboard shortcut, the word characters
to the immediate left of the cursor in the current document are used as the prefix. Note that if no
word characters are to the left of the cursor, or the prefix given on the command line is an empty
string (""), then all words in all your open documents are displayed. Prefix matches may be case
sensitive or not depending on the current document’s CaseSearch flag state. See Section 4.5.10
[CaseSearch], page 35.

4.6 Macros Commands
Macros are lists of commands. Any series of operations that has to be performed frequently is a
good candidate for being a macro.

Macros can be written manually: they are just ASCII files, each command occupying a line (lines
starting with ‘#’ are considered comments; lines starting with other nonalphabetical characters are
presently ignored). But the real power of macros is that they be recorded during the normal usage
of ne. When the recording terminates, the operations that have been recorded can be saved for later
use. Note that each document has its own current macro (the last macro that has been opened or
recorded).

4.6.1 Record
Syntax: Record [0|1]
Abbreviation: REC
starts, stops, cancels, or resumes macro recording. With no arguments, Record starts recording your
commands as a new macro unless recording is already underway. In that case, macro recording is
stopped, and the newly recorded macro replaces the current document’s unnamed macro. The new
macro can be played or saved via Section 4.6.2 [Play], page 36, or Section 4.6.5 [SaveMacro],
page 37. The default key binding for CONTROL-T is Record with no arguments, and is by far the
most common way to use the Record command.

If you’ve started recording a macro and wish to cancel rather than wipe out your existing macro,
you can cancel the recording by using Record 0. An error will be displayed if you aren’t recording
already, but it’s harmless.

Sometimes you’ve got a macro either recorded or loaded from a file (see Section 4.6.4 [Open-
Macro], page 37), but you’d like to record additional commands onto the end of it. Record 1 will
do that. It will start recording onto the end of a copy of your current document’s macro. An error
will be displayed if you are already recording, but it’s otherwise harmless.

4.6.2 Play
Syntax: Play [times]
Abbreviation: PL
plays the current document’s macro the given number of times. If the optional argument times is
not specified, you can enter it on the input line.

A (possibly iterated) macro execution terminates as soon as its stream of instructions is ex-
hausted, or one of its commands returns an error. This means that, for instance, you can perform
some complex operation on all the lines containing a certain pattern by recording a macro that

42 ne’s manual

searches for the pattern and performs the operation, and then playing it a preposterously huge num-
ber of times.

Execution of a macro can be interrupted by CONTROL-\.

4.6.3 Macro
Syntax: Macro [filename]
Abbreviation: MA

executes the given file name as a macro.

If the optional filename argument is not specified, the file requester is opened, and you are
prompted to select a file. (You can inhibit the file requester opening by using the NoFileReq

command; see Section 4.9.7 [NoFileReq], page 42.)

If you escape from the file requester, you can input the file name on the command line.

Note that macros whose names do not conflict with a command can be called without using
Macro. Whenever ne is required to perform a command it cannot find in its internal tables, it will
look for a macro by that name in the current directory. If this search also fails, ne looks in ‘˜/.ne’
and finally in the ‘macros’ subdirectory of ne’s global directory (defined when ne was built, or in
a place specified by your NE_GLOBAL_DIR environment variable) for a macro file by that name.

Warning: the first time a macro is executed it is cached into a hash table and is kept forever in mem-
ory unless the UnloadMacros command is issued; see Section 4.6.6 [UnloadMacros], page 37. The
next time a macro with the same file name is invoked, the cached list is searched for it before access-
ing the file using a case insensitive string comparison. That is, if you call ˜/foobar/macro, a sub-
sequent call for /usr/MACRO or even just MaCrO will use the cached version of ˜/foobar/macro.
Note that the cache table is global to ne and not specific to any single document. This greatly
improves efficiency when macros are used repeatedly.

4.6.4 OpenMacro
Syntax: OpenMacro [filename]
Abbreviation: OM

loads the given file name as the current document’s macro just as if you Recorded it; see Sec-
tion 4.6.1 [Record], page 36.

If the optional filename argument is not specified, the file requester is opened, and you are
prompted to select a file. (You can inhibit the file requester opening by using the NoFileReq

command; see Section 4.9.7 [NoFileReq], page 42.)

If you escape from the file requester, you can input the file name on the command line.

4.6.5 SaveMacro
Syntax: SaveMacro [filename]
Abbreviation: SM

saves the current document’s macro in a file with the given name.

If the optional filename argument is not specified, the file requester is opened, and you are
prompted to select a file. (You can inhibit the file requester opening by using the NoFileReq

command; see Section 4.9.7 [NoFileReq], page 42.)

If you escape from the file requester, you can input the file name on the command line.

Chapter 4: Commands 43

SaveMacro is of course most useful for saving macros you just recorded. The macros can
then be loaded as normal text files for further editing, if necessary. Note that SaveMacro con-
verts InsertChar commands into a possibly smaller number of InsertString commands. This
makes macros easier to read and edit. See Section 4.11.1 [InsertChar], page 53, and Section 4.11.2
[InsertString], page 54.

4.6.6 UnloadMacros
Syntax: UnloadMacros
Abbreviation: UM

frees the macro cache list. After this command, the Macro command will be forced to search for
the file containing the macros it has to play.

UnloadMacros is especially useful if you are experimenting with a macro bound to some
keystroke, and you are interactively modifying it and playing it. UnloadMacros forces ne to look
for the newer version available.

4.7 Undo Commands
The following commands control the undo system.

4.7.1 Undo
Syntax: Undo [n]
Abbreviation: U

undoes the last n actions. If n is not specified, it is assumed to be one. After you undo a number
of actions, you can Redo all or some of them; see Section 4.7.2 [Redo], page 37. However, if you
take any new actions after having Undone some, you can no longer Redo those Undone actions. See
Section 4.7.2 [Redo], page 37.

4.7.2 Redo
Syntax: Redo [n]
Abbreviation: RE

redoes the last n actions undone by Undo (as long as you don’t take any actions that change the text
between the Undo and Redo commands). If n is not specified, it is assumed to be one. You can only
Redo actions that have been Undone. See Section 4.7.1 [Undo], page 37.

4.7.3 UndelLine
Syntax: UndelLine [n]
Abbreviation: UL

inserts at the cursor position for n times the last non-empty line that was deleted with the
DeleteLine command. If n is not specified, it is assumed to be one.

UndelLine is most useful in that it allows a very fast way of moving one line around. Just
delete it, and undelete it somewhere else. It is also an easy way to replicate a line without getting
involved with clips.

Note that UndelLine works independently of the status of the undo flag. See Section 4.7.4
[DoUndo], page 38.

44 ne’s manual

4.7.4 DoUndo
Syntax: DoUndo [0|1]
Abbreviation: DU

sets the flag that enables or disables the undo system. When you turn the undo system off, all the
recorded actions are discarded, and the undo buffers are reset.

If you invoke DoUndo with no arguments, it will toggle the flag. If you specify 0 or 1, the flag
will be set to false or true, respectively. A lower case ‘u’ will appear on the status bar if the flag is
true. (The ‘U’ will be upper case if the flag is true and the AtomicUndo level is non-zero.)

The usefulness of this option relies in the fact that the undo system is a major memory eater.
If you plan to do massive editing (say, cutting and pasting megabytes of text) it is a good idea
to disable the undo system, both for improving (doubling) performance and for using less (half)
memory. Except for this, on a virtual memory system we see no reason to not keep the undo flag
always true, and this is indeed the default.

4.7.5 AtomicUndo
Syntax: AtomicUndo [0|+|-]
Abbreviation: AU

increases, decreases, sets or clears the AtomicUndo level. The normal level is zero. All current
document changes made while the AtomicUndo level is above zero are treated as a single change
by the Undo and Redo commands. If no parameter is given, a level of 0 is set to 1; otherwise the
current non-zero level is decremented. If 0 is given, the level is reset to zero. Parameters of ‘+’ and
‘-’ respectively increment and decrement the level, which in no case can be negative. If the level is
above zero, the DoUndo flag in the status bar, which is normally a lower-case ‘u’, becomes upper
case ‘U’.

Two other actions will reset the AtomicUndo level to zero: invoking the Undo command, and
disabling the undo system with the DoUndo command. You cannot set a non-zero AtomicUndo

level unless the undo system is enabled.

Note: macros that you wish to undo and redo atomically—i.e., as if they were single
commands—should begin with AtomicUndo + and end with AtomicUndo - so that they can call
and/or be called by other macros.

4.8 Formatting Commands
The following commands allow simple formatting operations on the text. Note that for ne a para-
graph is delimited by an empty line or a line with leading white space incongruous with that of
preceeding lines.

4.8.1 Center
Syntax: Center [n]
Abbreviation: CE

centers n lines from the cursor position onwards. If n is not specified, it is assumed to be one. The
lines are centered with spaces, relatively to the value of the right margin as set by the RightMargin
command. See Section 4.8.6 [RightMargin], page 39.

Chapter 4: Commands 45

4.8.2 Paragraph
Syntax: Paragraph [n]
Abbreviation: PA
reformats n paragraphs from the cursor position onwards. If n is not specified, it is assumed to
be one. The paragraphs are formatted relatively to the value of the right margin as set by the
RightMargin command. See Section 4.8.6 [RightMargin], page 39.

ne’s notion of a paragraph includes the current non-blank line (regardless of its leading white
space) and all subsequent non-blank lines that have identical (to each other’s—not to the first line’s)
leading white space. Therefore your paragraphs can have various first line indentations and left
margins.

After the Paragraph command completes, your cursor will be positioned on the first non-blank
character after the last reformatted paragraph (or, if there is no such character, at the end of the
document).

Paragraph does not insert “smart” spaces after full stops and colons, nor does it do other
“smart” things such as justification. If you need such facilities, you should consider using a text
formatter. TEX for example is usually an excellent choice.

4.8.3 ToUpper
Syntax: ToUpper [n]
Abbreviation: TU
shifts to upper case the letters from the cursor position up to the end of a word, and moves to the
first letter of next word for n times.

The description of the command may seem a little bit cryptic. What is really happening is that
there are situations where you only want to upper case the last part of a word. In this case, you just
have to position the cursor in the first character you want to upper case, and use ToUpper with no
argument.

If you apply ToUpper on the first character of a word, it will just upper case n words.

4.8.4 ToLower
Syntax: ToLower [n]
Abbreviation: TL
acts exactly like ToUpper, but lowers the case. See Section 4.8.3 [ToUpper], page 39.

4.8.5 Capitalize
Syntax: Capitalize [n]
Abbreviation: CA
acts exactly like ToUpper, but capitalizes, that is, makes the first letter upper case and the other
ones lower case. See Section 4.8.3 [ToUpper], page 39.

4.8.6 RightMargin
Syntax: RightMargin [n]
Abbreviation: RM
sets the right margin for all formatting operations, and for WordWrap. See Section 4.8.7 [Word-
Wrap], page 40.

46 ne’s manual

If the optional argument n is not specified, you can enter it on the input line, the default being
the current value of the right margin.

A value of zero for n will force ne to use (what it thinks it is) the current screen width as right
margin.

4.8.7 WordWrap
Syntax: WordWrap [0|1]
Abbreviation: WW

sets the word wrap flag. When this flag is true, ne will automatically break lines of text when you
attempt to insert characters beyond the right margin. See Section 4.8.6 [RightMargin], page 39.

If you invoke WordWrap with no arguments, it will toggle the flag. If you specify 0 or 1, the flag
will be set to false or true, respectively. A lower case ‘w’ will appear on the status bar if the flag is
true.

4.8.8 AutoIndent
Syntax: AutoIndent [0|1]
Abbreviation: AI

sets the auto indent flag. When this flag is true, ne will automatically insert TABs and spaces on a
new line (created by an InsertLine command, or by automatic word wrapping) in such a way to
replicate the initial spaces of the previous line. Most useful for indenting programs.

If you invoke AutoIndent with no arguments, it will toggle the flag. If you specify 0 or 1, the
flag will be set to false or true, respectively. A lower case ‘a’ will appear on the status bar if the flag
is true.

AutoIndent features a nice interaction with Undo. Whenever a new line is created, the insertion
of spaces is recorded as a separate action in the undo buffer (with respect to the line creation). If
you are not satisfied with the indentation, just give the Undo command and the indentation will
disappear (but the new line will remain in place, since its creation has been recorded as a separate
action). See Section 4.7.1 [Undo], page 37.

4.9 Preferences Commands
These commands allow you to set your preferences, that is, the value of a series of flags that modify
the behaviour of ne. (Some of the flag commands, like the command for the indent flag, appear
in other sections.) The status of the flags can be saved and restored later either by writing them
out to a file (saved as a macro that suitably sets the flags) or by pushing them onto a “preferences
stack”. The back search and the read only flags are not saved, because they do not represent a
preference, but rather a temporary state. The escape time and the turbo parameter are global to
ne, and are not saved. However, you can add manually to a preferences file any preferences com-
mand (such as EscapeTime or Turbo); usually, this will be done to the default preferences file
‘˜/.ne/.default#ap’.

Note that there is an automatic preferences system, which automagically loads a preferences file
related to the extension of the file name. Automatic preferences files are kept in your ‘˜/.ne’ direc-
tory. They are named as an extension postfixed with ‘#ap’. Each time you open a file whose name
has an extension for which there is an automatic preferences file, the latter is executed. Opening a
file which has no extension causes the prefs from ‘˜/.ne/.default#ap’ to be loaded. If you want

Chapter 4: Commands 47

to inhibit this process, you can clear the automatic preferences flag. See Section 4.9.2 [AutoPrefs],
page 41.

4.9.1 Flags
Syntax: Flags
Abbreviation: FLAG

displays a list of all the status flags for ne and their associated commands. It is not recorded when
recording a macro.

FLAG COMMAND ABBR DESCRIPTION

i Insert I inserts new characters (vs. replacing)

a AutoIndent AI aligns cursor under previous line after <Return>

b SearchBack SB searches search backward rather than forward

c CaseSearch CS searches are case sensitive

w WordWrap WW breaks long lines as you type

f FreeForm FF allows cursor to move beyond the end of lines

p AutoPrefs AP use automatic preferences based on file extension

v VerboseMacros VM record macros using use long command names

u DoUndo DU record edits for later undoing

r ReadOnly RO changes are not allowed/saves are prompted

t/T Tabs TAB TAB key inserts TABs instead of spaces

T ShiftTabs SHT Shift may insert TABs (only if ’t’ is also set)

d DelTabs DT BS and DEL may remove tabs worth of space

B/! Binary B affects file loading/saving

M Mark M mark set for line-oriented block operations

V MarkVert MV like mark, but block is rectangle

R Record REC actions are being recorded in a macro

P PreserveCR PCR affects how <CR> chars are loaded from files

C CRLF CRLF use CR/LF as line terminator

@ UTF8IO U8IO I/O (keyboard and terminal) are UTF-8 encoded

A/8/U UTF8 U8 the document encoding (ASCII, 8-bit or UTF-8)

*/_ Modified MOD document has been modified since last saved

_ (none) file’s modtime changed since doc was loaded/saved

The RequestOrder and AutoMatchBracket flags’ states are not indicated on the status bar.
See Section 4.9.8 [RequestOrder], page 42 and Section 4.5.8 [AutoMatchBracket], page 35 respec-
tively. A ‘!’ indicates the last line is not terminated.

4.9.2 AutoPrefs
Syntax: AutoPrefs [0|1]
Abbreviation: AP

sets the automatic preferences flag. If this flag is true, each time an Open command is executed
and a file is loaded, ne will look for an automatic preferences file in your ‘˜/.ne’ directory. The
preferences file name is given by the extension of the file loaded, postfixed with ‘#ap’. Thus,
for instance, C sources have an associated ‘c#ap’ file. See Section 3.9 [Automatic Preferences],
page 25.

48 ne’s manual

If you invoke AutoPrefs with no arguments, it will toggle the flag. If you specify 0 or 1, the
flag will be set to false or true, respectively. A lower case ‘p’ will appear on the status bar if the flag
is true.

4.9.3 Binary
Syntax: Binary [0|1]
Abbreviation: B

sets the binary flag. When this flag is true, loading and saving a document is performed in a different
way. On loading, only nulls are considered newlines; on saving, nulls are saved instead of newlines.
This allows you to edit a binary file, fix some text in it, and save it without modifying anything else.
Normally, line feeds, carriage returns and nulls are considered newlines, so that what you load will
have all nulls and carriage returns substituted by newlines when saved.

Note that since usually binary files contain a great number of nulls, and every null will be con-
sidered a line terminator, the memory necessary for loading a binary file can be several times bigger
than the length of the file itself. Thus, binary editing within ne should be considered not a normal
activity, but rather an exceptional one.

If you invoke Binary with no arguments, it will toggle the flag. If you specify 0 or 1, the flag
will be set to false or true, respectively. An upper case ‘B’ will appear on the status bar if the flag
is true. If false, a ‘-’ or ‘!’ will indicate whether the last line of the document is empty, which
will determine whether the resulting file will have a normal line termination when the document is
saved.

4.9.4 Insert
Syntax: Insert [0|1]
Abbreviation: I

sets the insert flag. If this flag is true, the text you type is inserted, otherwise it overwrites the existing
characters. This also governs the behaviour of the InsertChar and InsertString commands.

If you invoke Insert with no arguments, it will toggle the flag. If you specify 0 or 1, the flag
will be set to false or true, respectively. A lower case ‘i’ will appear on the status bar if the flag is
true.

4.9.5 FastGUI
Syntax: FastGUI [0|1]
Abbreviation: FG

sets the fast graphical user interface flag. When this flag is true, ne tries to print as little as possible
while displaying menus and the status bar. In particular, menu items are highlighted by the cursor
only, the status bar is not highlighted (which allows printing it with fewer characters), the current
position of the mark is not highlighted, and the hexadecimal code for the character under the cursor
is not displayed. This option is only (but very) useful if you are using ne through a slow connection.

If you invoke FastGUI with no arguments, it will toggle the flag. If you specify 0 or 1, the flag
will be set to false or true, respectively.

The FastGUI setting is saved in your ‘˜/.ne/.default#ap’ file when you use the
SaveDefPrefs command or the ‘Save Def Prefs’ menu. It is not saved by the SaveAutoPrefs
command.

Chapter 4: Commands 49

4.9.6 FreeForm
Syntax: FreeForm [0|1]
Abbreviation: FF
sets the free form flag. When this flag is true, you can move with the cursor anywhere on the screen,
even where there is no text present (however, you cannot move inside the space expansion of a TAB

character).
If you invoke FreeForm with no arguments, it will toggle the flag. If you specify 0 or 1, the flag

will be set to false or true, respectively. A lower case ‘f’ will appear on the status bar if the flag is
true.

The issue free-form-versus-non-free-form is a major religious war that has engaged users from
day one. The due of the implementor is to allow both choices, and to set as default the correct one
(in his humble opinion). In this case, non-free-form.

4.9.7 NoFileReq
Syntax: NoFileReq [0|1]
Abbreviation: NFR
sets the file requester flag. When this flag is true, the file requester is never opened, under any
circumstances.

If you invoke NoFileReq with no arguments, it will toggle the flag. If you specify 0 or 1, the
flag will be set to false or true, respectively.

4.9.8 RequestOrder
Syntax: RequestOrder [0|1]
Abbreviation: RQO
sets the request order flag. When this flag is true, the requester displays entries in column order.
Otherwise entries are displayed by rows.

If you invoke RequestOrder with no arguments, it will toggle the flag. If you specify 0 or 1,
the flag will be set to false or true, respectively.

The RequestOrder setting is saved in your ‘˜/.ne/.default#ap’ file when you use the
SaveDefPrefs command or the ‘Save Def Prefs’ menu. It is not saved by the SaveAutoPrefs
command.

4.9.9 StatusBar
Syntax: StatusBar [0|1]
Abbreviation: ST
sets the status bar flag. When this flag is true, the status bar is displayed at the bottom of the screen.
There are only two reasons to turn off the status bar we are aware of:
• if you are using ne through a slow connection, updating the line/column indicator can really

slow down editing;
• scrolling caused by cursor movement on terminals that do not allow to set a scrolling region

can produce annoying flashes at the bottom of the screen.

If you invoke StatusBar with no arguments, it will toggle the flag. If you specify 0 or 1, the
flag will be set to false or true, respectively.

50 ne’s manual

The StatusBar setting is saved in your ‘˜/.ne/.default#ap’ file when you use the
SaveDefPrefs command or the ‘Save Def Prefs’ menu. It is not saved by the SaveAutoPrefs
command.

4.9.10 HexCode
Syntax: HexCode [0|1]
Abbreviation: HC

sets the hex code flag. When this flag is true, the hexadecimal code of the character currently under
the cursor is displayed on the status bar.

4.9.11 ReadOnly
Syntax: ReadOnly [0|1]
Abbreviation: RO

sets the read only flag. When this flag is true, no editing can be performed on the document (any
such attempt produces an error message). Saving read only documents is inhibited as well; you
must affirmatively answer a prompt to save a document with the read only flag set. This flag is
automatically set whenever you open a file that you cannot write to. See Section 4.2.1 [Open],
page 28.

If you invoke ReadOnly with no arguments, it will toggle the flag. If you specify 0 or 1, the flag
will be set to false or true, respectively. A lower case ‘r’ will appear on the status bar if the flag is
true.

4.9.12 EscapeTime
Syntax: EscapeTime [n]
Abbreviation: ET

sets the escape time. The ESCAPE key is recognized as such after n tenths of second. (see Chapter 7
[Motivations and Design], page 65.) Along slow connections, it can happen that the default value
of 10 is too low: in this case, escape sequences (e.g., those of the arrow keys) could be erroneously
broken into an escape and some spurious characters. Rising the escape time usually solves this
problem. Allowed values range from 0 to 255. Note that you can accelerate the recognition of the
ESCAPE key by hitting it twice in a row.

Note that the escape time is global to ne, and it is not saved. However, you can add an
EscapeTime command manually to a preferences file.

4.9.13 TabSize
Syntax: TabSize [size]
Abbreviation: TS

sets the number of spaces ne will use when expanding a TAB character.

If the optional argument size is not specified, you can enter it on the input line, the default being
the current TAB size. Allowed values are strictly between 0 and half the width of the screen.

4.9.14 Tabs
Syntax: Tabs [0|1]
Abbreviation: TAB

Chapter 4: Commands 51

sets the Tabs flag. When this flag is set, TAB key and the InsertTab command will insert literal
TAB characters. Otherwise it will insert enough spaces to have the same visual effect.

In normal editing, the TAB key invokes the command "InsertTab 1". Unlike most others, the
TAB key cannot be mapped to other commands. Thus the Tabs flag provides the only customization
ne offers for the TAB key.

If set, either a lower case ‘t’ or upper case ‘T’ will appear in the status bar depending on the
state of the ShiftTabs flag. (The ShiftTabs flag is irrelevant if the Tabs flag is off.) See
Section 4.9.16 [ShiftTabs], page 44.

4.9.15 DelTabs
Syntax: DelTabs [0|1]
Abbreviation: DT

sets the DelTabs flag. When this flag is set, a ‘d’ will appear on the status bar, and the BACKSPACE
and DEL keys will remove a tab’s worth of space characters if a TAB character could have occupied
the same whitespace in the current line as the removed spaces. This is the deletion counterpart to
the Tabs flag. See Section 4.9.14 [Tabs], page 44.

4.9.16 ShiftTabs
Syntax: ShiftTabs [0|1]
Abbreviation: SHT

sets the ShiftTabs flag. ShiftTabs has an effect only when the Tabs flag is set, in which case an
upper case ‘T’ appears in the status bar. When this flag and the Tabs flag are both set, left and right
Shift commands may use tab characters to adjust leading white space. Otherwise only spaces are
used. See Section 4.4.8 [Shift], page 31.

4.9.17 Turbo
Syntax: Turbo [steps]
Abbreviation: TUR

sets the turbo parameter. Iterated actions and global replaces will update at most steps lines of the
screen (or at most twice the number of visible rows if steps is zero); then, update will be delayed to
the end of the action.

This feature is most useful when massive operations (such as replacing thousands of occurrences
of a pattern) have to be performed. After having updated steps lines, ne can proceed at maximum
speed, because no visual update has to be performed.

The value of the turbo parameter has to be adapted to the kind of terminal you are using. Very
high values can be good on high-speed terminals, since the time required for the visual updates is
very small, and it is always safer to look at what the editor is really doing. On slow terminals,
however, small values ensure that operations such as paragraph formatting will not take too long.

You have to be careful about setting the turbo parameter too low. ne keeps track internally of
the part of the screen that needs refresh in a very rough way. This means that a value of less than,
say, 8 will force it to do a lot of unnecessary refresh.

The default value of this parameter is zero, which means twice the number of lines of the screen;
for several reasons this does seem to be a good value.

52 ne’s manual

4.9.18 VerboseMacros
Syntax: VerboseMacros [0|1]
Abbreviation: VM

sets the verbose macros flag. When this flag is true, all macros generated by recording or by auto-
matic preferences saving will contain full names, instead of short names. This is highly desirable if
you are going to edit the macro manually, but it can slow down command parsing.

If you invoke VerboseMacros with no arguments, it will toggle the flag. If you specify 0 or 1,
the flag will be set to false or true, respectively. A lower case ‘v’ will appear on the status bar if the
flag is true.

The only reason to use this flag is when recording a macro that will be played a great number of
times. Automatic preferences files are too short to be an issue with respect to execution timing.

The VerboseMacros setting is saved in your ‘˜/.ne/.default#ap’ file when you use the
SaveDefPrefs command or the ‘Save Def Prefs’ menu. It is not saved by the SaveAutoPrefs
command.

4.9.19 PreserveCR
Syntax: PreserveCR [0|1]
Abbreviation: PCR

sets the preserve carriage returns flag. When a file is loaded into a document for which this flag is
false, both CR (carriage return) and NL (new line) characters are treated as line terminators. If the
flag is true, CR characters do not act as line terminators but are instead preserved in the document.
This flag has no effect except when loading a file into a document.

If you invoke PreserveCR with no arguments, it will toggle the flag. If you specify 0 or 1, the
flag will be set to false or true, respectively. An upper case ‘P’ will appear on the status bar if the
flag is true.

4.9.20 CRLF
Syntax: CRLF [0|1]
Abbreviation: CRLF

sets the CR/LF flag. When a file is saved from a document for which this flag is true, both a CR
(carriage return) and a NL (new line) character are output as line terminators. This flag has no effect
except when saving a file.

This flag is automatically set if you load a file that has at least one CR/LF sequence in it.

If you invoke CRLF with no arguments, it will toggle the flag. If you specify 0 or 1, the flag will
be set to false or true, respectively. An upper case ‘C’ will appear on the status bar if the flag is true.

4.9.21 VisualBell
Syntax: VisualBell [0|1]
Abbreviation: VB

sets the visual bell flag. When this flag is true, the terminal will flash (if possible) instead of beeping.

If you invoke VisualBell with no arguments, it will toggle the flag. If you specify 0 or 1, the
flag will be set to false or true, respectively.

Chapter 4: Commands 53

4.9.22 PushPrefs
Syntax: PushPrefs [n]
Abbreviation: PUSHP
pushes n copies of the user preferences onto a stack. If not specified, n defaults to one. Use the
PopPrefs command to pop preferences off the stack and restore the values. See Section 4.9.23
[PopPrefs], page 46. Note that the preferences stack is global, not document-specific, so you could
PushPrefs one document’s preferences, switch documents, then PopPrefs those preferences,
thereby altering the preferences for the second document. The maximum preferences stack depth is
32.

PushPrefs and PopPrefs are useful in macros that require certain preferences to work prop-
erly. A macro can PushPrefs, change any preferences necessary, do its work, then PopPrefs to
restore the users previous preferences settings.
PushPrefs saves the following values on the preferences stack:

AutoIndent DelTabs NoFileReq StatusBar VisualBell

AutoPrefs DoUndo PreserveCR ShiftTabs WordWrap

Binary FreeForm ReadOnly Tabs

CaseSearch HexCode RightMargin TabSize

ClipNumber Insert SearchBack UTF8Auto

4.9.23 PopPrefs
Syntax: PopPrefs [n]
Abbreviation: POPP
pops n sets of preferences from the preferences stack (where they were placed previously
by PushPrefs) and applies those preferences to the current document. See Section 4.9.22
[PushPrefs], page 45. If not specified, n defaults to one. Note that the preferences stack is global,
not document specific. Therefore you could PushPrefs one document’s preferences, switch
documents, then PopPrefs those settings altering the preferences for the second document. The
maximum preferences stack depth is 32.

PushPrefs and PopPrefs are useful in macros that require certain preferences to work prop-
erly. A macro can PushPrefs, change any preferences necessary, do its work, then PopPrefs to
restore the users previous preferences settings.
PopPrefs restores the following values from the preferences stack:

AutoIndent DelTabs NoFileReq StatusBar VisualBell

AutoPrefs DoUndo PreserveCR ShiftTabs WordWrap

Binary FreeForm ReadOnly Tabs

CaseSearch HexCode RightMargin TabSize

ClipNumber Insert SearchBack UTF8Auto

4.9.24 LoadPrefs
Syntax: LoadPrefs [filename]
Abbreviation: LP
loads the given preference file, and sets the current preferences accordingly.

If the optional filename argument is not specified, the file requester is opened, and you are
prompted to select a file. (You can inhibit the file requester opening by using the NoFileReq

54 ne’s manual

command; see Section 4.9.7 [NoFileReq], page 42.) If you escape from the file requester, you can
input the file name on the command line.

Note that a preferences file is just a macro containing only option modifiers. You can manually
edit a preferences file for special purposes, such as filtering out specific settings. See Chapter 6
[Hints and Tricks], page 63.

4.9.25 SavePrefs
Syntax: SavePrefs [filename]
Abbreviation: SP

saves the current preferences to the given file.

If the optional filename argument is not specified, the file requester is opened, and you are
prompted to select a file. (You can inhibit the file requester opening by using the NoFileReq

command; see Section 4.9.7 [NoFileReq], page 42.) If you escape from the file requester, you can
input the file name on the command line.

4.9.26 LoadAutoPrefs
Syntax: LoadAutoPrefs
Abbreviation: LAP

loads the preferences file in ‘˜/.ne’ associated with the current document’s file name extension.
If the current file name has no extension, the default preferences are loaded. See Section 4.9.2
[AutoPrefs], page 41.

4.9.27 SaveAutoPrefs
Syntax: SaveAutoPrefs
Abbreviation: SAP

saves the current preferences to the file in ‘˜/.ne’ associated with the current document’s file name
extension. If the current file name has no extension, an error message is issued. See Section 4.9.2
[AutoPrefs], page 41.

4.9.28 SaveDefPrefs
Syntax: SaveDefPrefs
Abbreviation: SDP

saves the current preferences to the ‘˜/.ne/.default#ap’ file. This file is always loaded by ne

at startup.

4.9.29 Modified
Syntax: Modified [0|1]
Abbreviation: MOD

sets the modified flag. This flag is set automatically whenever a document is modified, and is used to
determine which documents need to be saved by SaveAll or when ne exits. Normally you would
not alter this flag, but when a document is inadvertently modified and you don’t want the changes
saved, Modified provides a way to make ne consider the document unchanged.

If you invoke Modified with no arguments, it will toggle the flag. If you specify 0 or 1, the
flag will be set to false or true, respectively. An asterisk (‘*’) will appear on the status bar when

Chapter 4: Commands 55

this flag is set. If your terminal supports underlining, it will be underlined if the corresponding file’s
modification time has changed since the document was loaded or saved (perhaps by another user).

4.9.30 Syntax
Syntax: Syntax [name|*]
Abbreviation: SY
loads the syntax with the given name, and colors the current document accordingly.

If the optional name argument is not specified, you are prompted for one. The current one, if set,
is suggested as the default. Use the TAB key for a requester of the extant syntax recognizers. The
special name * turns off syntax highlighting for the current document. Otherwise, name must match
a syntax definition either in your ‘˜/.ne/syntax’ directory or in a directory named ‘syntax’
inside ne’s global directory. Additionally, ne has a table mapping common suffixes to syntax names.
If there is no syntax with a given name, ne will try to remap the name using the following table (the
string before the colon is the name of the syntax file):

ada: adb, ads

asm: s

c: c++, cc, cpp, cxx, h, h++, hpp, l, lex, y, yacc

cobol: cbl, cob

csh: tcsh

diff: patch

fortran: f, F, for, f90, F90

html: htm

java: js

lisp: el, lsp

mason: mas

ocaml: ml, mli

pascal: p, pas

perl: pl, pm

ps: eps

puppet: pp

python: py, sage

rexx: rex

ruby: rb

sh: bash, bash_login, bash_logout, bash_profile, bashrc, ksh,

profile, rc

skill: il

tex: latex, dtx, sty

texinfo: texi, txi

troff: 1

verilog: v, vh, vhd

xml: xsd

yaml: yml

4.9.31 UTF8
Syntax: UTF8 [0|1]
Abbreviation: U8

56 ne’s manual

sets the UTF-8 flag. When this flag is true, ne considers the current document as UTF-8 coded. Note
that this flag is set automatically upon file loading (if possible) if you required automatic detection.
See Section 4.9.32 [UTF8Auto], page 48.

If you invoke UTF8 with no arguments, it will toggle the flag. If you specify 0 or 1, the flag will
be set to false or true, respectively. When you try to set this flag, the document will be checked for
UTF-8 compliance, and you will get an error message in case of failure. When you try to reset it,
the document is set to ASCII or 8-bit, depending on its content. A ‘U’ will appear on the status bar
if the flag is true. Alternatively, an ‘A’ or an ‘8’ will be displayed to denote whether the document is
composed exclusively by US-ASCII characters, or also by other 8-bit characters (whose encoding is
likely to be part of the ISO-8859 family). Note that each time this command modifies the document
encoding, it also resets the undo buffer.

4.9.32 UTF8Auto
Syntax: UTF8Auto [0|1]
Abbreviation: U8A

sets the UTF-8 automatic-detection flag. When this flag is true, ne will try to guess whether a file
just loaded is UTF-8 encoded. Moreover, when a non US-ASCII character is inserted in a pure US-
ASCII document, ne will automatically switch to UTF-8. See Section 4.9.31 [UTF8], page 48. The
flag is true by default if ne detects UTF-8 I/O at startup. See Section 4.9.33 [UTF8IO], page 49.

If you invoke UTF8Auto with no arguments, it will toggle the flag. If you specify 0 or 1, the flag
will be set to false or true, respectively.

4.9.33 UTF8IO
Syntax: UTF8IO [0|1]
Abbreviation: U8IO

sets the UTF-8 input/output flag. This flag is set automatically depending on your locale setting,
and is used to determine whether communication with the user (keyboard and terminal) should be
UTF-8 encoded. Normally you would not alter this flag, but sometimes ne may make the wrong
guess (e.g., when you are remotely connected).

If you invoke UTF8IO with no arguments, it will toggle the flag. If you specify 0 or 1, the flag
will be set to false or true, respectively. An ‘@’ will appear on the status bar if the flag is true.

4.10 Navigation Commands
These commands allow you to move through a document. Besides the standard commands that
allow you to move by lines, pages, et cetera, ne has bookmarks that let you mark a position in a file
so to move to the same position later.

4.10.1 MoveLeft
Syntax: MoveLeft [n]
Abbreviation: ML

moves the cursor to the left by one character n times. If the optional n argument is not specified, it
is assumed to be one.

Chapter 4: Commands 57

4.10.2 MoveRight
Syntax: MoveRight [n]
Abbreviation: MR
moves the cursor to the right by one character n times. If the optional n argument is not specified,
it is assumed to be one.

4.10.3 LineUp
Syntax: LineUp [n]
Abbreviation: LU
moves the cursor up by one line n times. If the optional n argument is not specified, it is assumed
to be one.

4.10.4 LineDown
Syntax: LineDown [n]
Abbreviation: LD
moves the cursor down by one line n times. If the optional n argument is not specified, it is assumed
to be one.

4.10.5 GotoLine
Syntax: GotoLine [line]
Abbreviation: GL
moves the cursor to the lineth line of the file. If line is zero or greater than the number of lines in
the file, the cursor is moved to the last line.

If the optional argument line is not specified, you can enter it on the input line; the default input
response is the current line number.

4.10.6 GotoColumn
Syntax: GotoColumn [column]
Abbreviation: GC
moves the cursor to the columnth column of the file.

If the optional argument line is not specified, you can enter it on the input line; the default input
response is the current column number.

4.10.7 GotoMark
Syntax: GotoMark
Abbreviation: GM
moves the cursor to the current mark, if it exists. See Section 4.4.1 [Mark], page 30.

GotoMark is mainly useful if you forgot where you started marking. If you want to record posi-
tions in a file and jump to them later, you may want to use bookmarks instead. See Section 4.10.26
[SetBookmark], page 52.

4.10.8 PrevPage
Syntax: PrevPage [n]
Abbreviation: PP

58 ne’s manual

moves the cursor n pages backward, if the cursor is on the first line of the screen; otherwise moves
the cursor to the first line of the screen, and moves by n-1 pages. If the optional n argument is not
specified, it is assumed to be one.

4.10.9 NextPage
Syntax: NextPage [n]
Abbreviation: NP
moves the cursor n pages forward, if the cursor is on the last line of the screen; otherwise moves
the cursor to the last line of the screen, and moves by n-1 pages. If the optional n argument is not
specified, it is assumed to be one.

4.10.10 PageUp
Syntax: PageUp [n]
Abbreviation: PUP
pages the screen backward by n screens. If n is not specified, it is assumed to be one.

4.10.11 PageDown
Syntax: PageDown [n]
Abbreviation: PDN
pages the screen forward by n screens. If n is not specified, it is assumed to be one.

4.10.12 PrevWord
Syntax: PrevWord [n][<|>]
Abbreviation: PW
moves the cursor to the left to the nth word beginning or ending. If the optional n argument is not
specified, one is used. The optional ‘<’ or ‘>’ determines whether to move to the word beginning or
ending, respectively. If unspecified, the left end (‘<’) is used.

4.10.13 NextWord
Syntax: NextWord [n][<|>]
Abbreviation: NW
moves the cursor to the right to the nth word beginning or ending. If the optional n argument is not
specified, one is used. The optional ‘<’ or ‘>’ determines whether to move to the word beginning or
ending, respectively. If unspecified, the left end (‘<’) is used.

4.10.14 MoveEOL
Syntax: MoveEOL
Abbreviation: EOL
moves the cursor to the end of the current line (EOL = end of line).

4.10.15 MoveSOL
Syntax: MoveSOL
Abbreviation: SOL
moves the cursor to the start of the current line (SOL = start of line).

Chapter 4: Commands 59

4.10.16 MoveTOS
Syntax: MoveTOS
Abbreviation: TOS
moves the cursor to the top line of the screen (TOS = top of screen).

4.10.17 MoveBOS
Syntax: MoveBOS
Abbreviation: BOS
moves the cursor to the lowest line currently visible (BOS = bottom of screen).

4.10.18 MoveEOF
Syntax: MoveEOF
Abbreviation: EOF
moves the cursor to the end of the document (EOF = end of file).

4.10.19 MoveSOF
Syntax: MoveSOF
Abbreviation: SOF
moves the cursor to the start of the document (SOF = start of file).

4.10.20 MoveEOW
Syntax: MoveEOW [<|>]
Abbreviation: EOW
moves the cursor to the end of the current word, that end being the right end unless you include the
optional parameter ‘<’. If the cursor is not currently in a word, or if it’s already at the indicated end,
it retains its current location.

MoveEOW is extremely useful in macros, because it allows you to copy precisely the word the
cursor is on. See Chapter 6 [Hints and Tricks], page 63.

4.10.21 MoveIncUp
Syntax: MoveIncUp
Abbreviation: MIU
moves the cursor incrementally towards the beginning of the document. More precisely, if the cursor
is not on the start of the line it lies on, then it is moved to the start of that line. Otherwise, if it is on
the first line of the screen, then it is moved to the start of the document; otherwise, it is moved to
the first line of the screen.

4.10.22 MoveIncDown
Syntax: MoveIncDown
Abbreviation: MID
moves the cursor incrementally towards the end of the document. More precisely, if the cursor is
not on the end of the line it lies on, then it is moved to the end of that line. Otherwise, if it is on the
last line of the screen, then it is moved to the end of the document; otherwise, it is moved to the last
line of the screen.

60 ne’s manual

4.10.23 AdjustView
Syntax: AdjustView [T|M|B|L|C|R] [n]
Abbreviation: AV
shifts the view (text visible in the terminal window) horizontally or vertically without changing the
cursor’s position in the document. View adjustments are constrained by the current TAB size and
the length and width of the current document. If called with no arguments ‘T’ is assumed.

‘T’, ‘M’, and ‘B’ cause vertical shifts so that the current line becomes the top, middle, or bottom-
most visible line respectively.

‘L’, ‘C’, and ‘R’ cause horizontal shifts, making the current column the left-most, center, or
right-most visible positions.

A optional number n immediately after ‘T’, ‘B’, ‘L’, or ‘R’ indicate the number or rows or
columns to shift the view toward the top, bottom, left, or right of the window.

Horizontal and vertical adjustment specifications may be combined, so that for example
‘AdjustView TL’ shifts the view so that the current position becomes the top left-most character
on screen (within the limits of the current TAB size). Likewise, ‘AdjustView B3R5’ shifts the
view three lines toward the bottom and five columns (excepting TAB size) toward the right.

4.10.24 ToggleSEOF
Syntax: ToggleSEOF
Abbreviation: TSEOF
moves the cursor to the start of document, if it is not already there; otherwise, moves it to the end of
the document.

This kind of toggling command is very useful in order to gain some keystrokes on systems with
very few keys. See also Section 4.10.25 [ToggleSEOL], page 52, Section 4.10.19 [MoveSOF],
page 51, and Section 4.10.18 [MoveEOF], page 51.

4.10.25 ToggleSEOL
Syntax: ToggleSEOL
Abbreviation: TSEOL
moves the cursor to the start of the current line, if it is not already there; otherwise, moves it to the
end of the current line.

This kind of toggling command is very useful in order to gain some keystrokes on systems with
very few keys. See also Section 4.10.24 [ToggleSEOF], page 52, Section 4.10.15 [MoveSOL],
page 51, and Section 4.10.14 [MoveEOL], page 51.

4.10.26 SetBookmark
Syntax: SetBookmark [n|+1|-1|-|?]
Abbreviation: SBM
sets a document bookmark to the current cursor position. Each document has 10 available book-
marks designated ‘0’ to ‘9’, plus the automatic bookmark designated by ‘-’. If no option is given,
‘0’ is assumed. Values of n from ‘0’ to ‘9’ set the nth bookmark, while ‘+1’ and ‘-1’ indicate
respectively the next and previous available unset bookmarks. You can also set the ‘-’ automatic
bookmark, but it will be reset automatically to the current position whenever a GotoBookmark

command is issued.

Chapter 4: Commands 61

The ‘?’ option will cause SetBookmark to prompt you for a bookmark designation. The promp
will include an indication of which bookmarks are currently set. You may find this useful in macros,
or to bind a key to ‘SetBookmark ?’.

4.10.27 GotoBookmark
Syntax: GotoBookmark [n|+1|-1|-]
Abbreviation: GBM

moves the cursor to the designated bookmark if that bookmark is set; see Section 4.10.26 [SetBook-
mark], page 52. Each document has 10 available bookmarks designated ‘0’ to ‘9’, plus the automatic
bookmark designated by ‘-’. If no option is given, ‘0’ is assumed. The optons ‘+1’ and ‘-1’ indicate
respectively the next and previous set bookmarks, so that repeated GotoBookmark +1 commands
will cycle through all currently set bookmarks. When successful, the ‘-’ automatic bookmark is
set to the position in the document from which the command was issued, so that GotoBookmark
- returns you to the location from which you last issued a successful GotoBookmark command.
Subsequent repeated GotoBookmark - commands will toggle you between the two locations.

The ‘?’ option will cause GotoBookmark to prompt you for a bookmark designation. The promp
will include an indication of which bookmarks are currently set. You may find this useful in macros,
or to bind a key to ‘GotoBookmark ?’.

4.10.28 UnsetBookmark
Syntax: UnsetBookmark [n|+1|-1|-|*]
Abbreviation: UBM

unsets either the nth bookmark, the next (+1) or previous (-1) set bookmarks, the automatic (-
) bookmark, or all (*) bookmarks, making it as if they had never been set; see Section 4.10.26
[SetBookmark], page 52. If no option is specified, n is assumed to be zero. While you can un-
set the automatic bookmark ‘-’, it will be reset automatically to the current position whenever a
GotoBookmark command is issued. Each document’s valid bookmark designations are 0 to 9, and
the ‘-’ automatic bookmark.

4.11 Editing Commands
These commands allow modifying a document directly.

4.11.1 InsertChar
Syntax: InsertChar [code]
Abbreviation: IC

inserts a character whose ASCII code is code at the current cursor position. code can be either
decimal, hexadecimal if preceded by ‘0x’, or octal if preceded by ‘0’. In any case, code must be
different from 0. All the currently active preferences options (insert, word wrapping, auto indent, et
cetera) are applied.

If the optional argument code is not specified, you can enter it on the input line, the default being
the last inserted character.

Note that inserting a line feed (10) is completely different from inserting a line with
InsertLine. InsertChar 10 puts the control char CONTROL-J in the text at the current cursor
position. See Section 4.11.8 [InsertLine], page 54.

62 ne’s manual

Note also that SaveMacro converts InsertChar commands into a possibly smaller number
of InsertString commands. This makes macros easier to read and edit. See Section 4.6.5
[SaveMacro], page 37.

4.11.2 InsertString
Syntax: InsertString [text]
Abbreviation: IS

inserts text at the current cursor position. If the optional argument text is omitted, you will be
prompted for it on the command line. All the currently active preferences options (insert, word
wrapping, auto indent, et cetera) are applied.

Note that SaveMacro converts InsertChar commands into a possibly smaller number
of InsertString commands. This makes macros easier to read and edit. See Section 4.6.5
[SaveMacro], page 37.

4.11.3 InsertTab
Syntax: InsertTab [n]
Abbreviation: IT

inserts either n literal TAB characters or one or more spaces sufficient to advance the current cursor
position n tab stops depending on the Tabs flag. See Section 4.9.14 [Tabs], page 44, Section 4.9.13
[TabSize], page 43.

4.11.4 DeleteChar
Syntax: DeleteChar [n]
Abbreviation: DC

deletes n characters from the text. If the optional n argument is not specified, it is assumed to be
one. Deleting a character when the cursor is just after the last char on a line will join a line with the
following one; in other words, the carriage return between the two lines will be deleted. Note that
if the cursor is past the end of the current line, no action will be performed.

4.11.5 DeletePrevWord
Syntax: DeletePrevWord [n]
Abbreviation: DPW

deletes text from the current position through the first character of the n’th previous start-of-word.
If the optional n argument is not specified, it is assumed to be one (in which case, if the cursor is in
the middle of a word the effect is just to delete to the start of that word).

4.11.6 DeleteNextWord
Syntax: DeleteNextWord [n]
Abbreviation: DNW

deletes text from the current position to the n’th next end-of-word If the optional n argument is not
specified, it is assumed to be one (in which case, if the cursor is in the middle of a word the effect is
just to delete to the end of that word).

Chapter 4: Commands 63

4.11.7 Backspace
Syntax: Backspace [n]
Abbreviation: BS
acts like DeleteChar, but moves the cursor to the left before deleting each character.

4.11.8 InsertLine
Syntax: InsertLine [n]
Abbreviation: IL
inserts n lines at the current cursor position, breaking the current line. If the optional n argument is
not specified, it is assumed to be one.

4.11.9 DeleteLine
Syntax: DeleteLine [n]
Abbreviation: DL
deletes n lines starting from the current cursor position, putting the last one in the temporary buffer,
from which it can be undeleted. See Section 4.7.3 [UndelLine], page 38. If the optional n argument
is not specified, it is assumed to be one. Note that this action is in no way inverse with respect to
InsertLine.

4.11.10 DeleteEOL
Syntax: DeleteEOL
Abbreviation: DE
deletes all characters from the current cursor position to the end of the line.

DeleteEOL could be easily implemented with a macro, but it is such a common, basic editing
feature that it seemed worth a separate implementation.

4.12 Support Commands
These commands perform miscellaneous useful actions. In particular, they provide access to the
shell and a way to assign the functionality of ESCAPE to another key.

4.12.1 About
Syntax: About
Abbreviation: About
displays the copyright splash screen and places a simple information line containing the version and
build date of ne on the status bar. Press any key to dismiss this screen.

4.12.2 Alert
Syntax: Alert
Abbreviation: AL
beeps or flashes, depending on the value of the visual bell flag.

4.12.3 Beep
Syntax: Beep
Abbreviation: BE

64 ne’s manual

beeps. If your terminal cannot beep, it flashes. If it cannot flash, nothing happens (but you have a
very bad terminal).

4.12.4 Exec
Syntax: Exec
Abbreviation: EX

prompts the user on the input line, asking for a command, and executes it. It is never registered
while recording a macro (though the command you type is).

Exec is mainly useful for key bindings, menu configurations, and in manually programmed
macros.

Note that if the command you specify does not appear in ne’s internal tables, it is considered to
be a macro name. See Section 4.6.3 [Macro], page 36.

4.12.5 Flash
Syntax: Flash
Abbreviation: FL

acts as Beep, but interchanging the words “beep” and “flash”. Same comments apply. See Sec-
tion 4.12.3 [Beep], page 55.

4.12.6 Help
Syntax: Help [name]
Abbreviation: H

displays some help about the command name (both the short and the long versions of the command
names are accepted). If no argument is given, a list of all existing commands in long form is
displayed, allowing you to choose one. You can browse the help text with the standard navigation
keys. If you press RETURN, the command list will be displayed again. If you press F1 or ESCAPE,
you will return to normal editing.

Invocations of the Help command are never registered while recording macros so that you can
safely access the help system while recording. See Section 4.6.1 [Record], page 36.

4.12.7 NOP
Syntax: NOP
Abbreviation: NOP

does nothing. Mainly useful for inhibiting standard key bindings.

4.12.8 Refresh
Syntax: Refresh
Abbreviation: REF

refreshes the display. Refresh is very important, and should preferably be bound to the CONTROL-
L sequence, for historical reasons. It can always happen that a noisy phone line or a quirk in the
terminal corrupts the display. This command restores it from scratch.

Refresh has the side effect of checking to see if your window size has changed, and will modify
the display to take that into account.

Chapter 4: Commands 65

4.12.9 Suspend
Syntax: Suspend
Abbreviation: SU
suspends ne and returns you to a shell prompt; usually, the shell command fg is used to resume ne.

4.12.10 System
Syntax: System [command]
Abbreviation: SYS
asks the shell to execute command. The terminal is temporarily reset to the state it was in before
ne’s activation, and command is started. When the execution is finished, control returns to ne.

If the optional argument command is not specified, you can enter it on the input line.

4.12.11 Escape
Syntax: Escape
Abbreviation: ESC
toggles the menus on and off, or escapes from the input line. This command is mainly useful
for reprogramming the menu activator, and it is never registered while recording a macro. See
Section 4.6.1 [Record], page 36.

4.12.12 KeyCode
Syntax: KeyCode [k]
Abbreviation: KC
prompts you to press a key, and reports on the status bar the key code ne associates with that key,
the command currently associated with that key code, as well as the input class for that key code.
Input class codes are: ALPHA, COMMAND, RETURN, TAB, IGNORE, and INVALID. This can
be useful while configuring your ‘˜/.ne/.keys’ file.

If the optional integer k (between 0 and 511) is given, KeyCode uses k as the key code and
displays the information described above.

4.12.13 NameConvert
Syntax: NameConvert [0|1]
Abbreviation: NC
converts the current document’s name between relative and absolute path names. With no parameter
it switches the current name from relative to absolute, or absolute to relative. With 1 it converts the
relative path to absolute or leaves the absolute path unchanged. With 0 it converts the absolute path
to relative or leaves the relative path unchanged.

66 ne’s manual

Chapter 5: Configuration 67

5 Configuration

In this chapter we shall see how the menus and the key bindings of ne can be completely configured.
Note that menu and key configuration is parsed at startup time, and cannot be changed during the
execution of the program. This is a chosen limitation.

We will also see how to override incorrect or missing file name extensions by comparing the
contents of documents to patterns to determine virtual extensions.

5.1 Key Bindings
ne allows you to associate any keystroke with any command. To accomplish this task, you have
to create a (possibly UTf-8) file named ‘.keys’ in your ‘˜/.ne’ directory. You can change the
default name (possibly specifying a complete path) using the --keys argument (see Section 3.1
[Arguments], page 11).

The format of the file is very simple: each line starting with the ‘KEY’ sequence of capital
characters is considered the description of a key binding. Each line starting with ‘SEQ’ binds a
character sequence to a key. All other lines are considered comments. The format of a key binding
description is

KEY hexcode command

The hexcode value is the ASCII code of the keystroke. (For special keys such as INSERT or
function keys, you should take a look at the file ‘default.keys’ that comes with ne’s distribution:
it contains a complete, commented definition of ne’s standard bindings that you can modify with a
trial-and-error approach.) The easiest way to see the code ne uses for a given key is by using the
Section 4.12.12 [KeyCode], page 56 command. It prompts you to press a key, then reports the code
for that key on the status bar. It also displays the command bound to that key if there is one.

You can write just the hexadecimal digits, nothing else is necessary (but a prefixing ‘0x’ is
tolerated). For instance,

KEY 1 MoveSOL

binds to CONTROL-A the action of moving to the start of a line, while

KEY 101 LineUp

binds to the “cursor-up” key the action of moving the cursor one line up.

command can be any ne command, including Escape (which allows reconfiguring the menu
activator) and Macro, which allows binding complex sequences of actions to a single keystroke.
The binding of a macro is very fast because on the first call the macro is cached in memory. See
Section 4.6.3 [Macro], page 36.

Note that you cannot ever redefine RETURN or ESCAPE. This is a basic issue—however brain
damaged is the current configuration, you will always be able to exploit fully the menus and the
command line.

Besides the “standard” combinations (e.g., CONTROL-letter), it possible to program combi-
nations based on the META key (a.k.a. ALT). The situation in this case is a bit more involved,
because depending on the terminal emulator you are using, the effect of the META key can be
widely different. For instance, xterm raises the eighth bit of a character, so, for instance,

KEY 81 MoveSOF

68 ne’s manual

binds CONTROL-META-a to the action of moving to the start of the document. However, gnome-
terminal will emit the character of ASCII code 1 prefixed with ESC instead (“\x1b\x01”). To
handle this case, ne provides codes from 180 on for simulated META sequences: for instance,

KEY 181 MoveSOF

binds the abovementioned sequence to the same action as before. In general, the code 180+x cor-
responds to the sequence ESC followed by the ASCII character of code x. Note that some of these
sequences may be disabled, if they conflict with existing sequences of your terminal (for instance,
ESC followed by ‘O’ is always disabled because it prefixes several built-in keyboard sequences).

As a final note, we remark that typing META-a on gnome-terminal will produce an ESC
followed by ‘a’ (“\x1ba”). Since it is obviously easier to press just META rather than META
and CONTROL at the same time, it is a good idea to associate the same sequence also to this
combination, using

KEY 1E1 MoveSOF

Moreover, this setting provides the user with a second choice: one can press ESCAPE followed by
a letter instead of using modifiers.

This is the approach used by default in ne: this way, CONTROL with META plus a letter should
always work, and META should work sometimes (of course, if you’re sure to use always the same
kind of emulator you can bind more features). Again, the best place to look is the ‘default.keys’
file.

As stated above, each line starting with ‘SEQ’ binds a character sequence to a key code. The
format for a ‘SEQ’ binding is

SEQ "sequence" hexcode

where "sequence" is a double-quoted string of characters (which can include escaped hexadeci-
mals) followed by a hexadecimal key code as described above for ‘KEY’ definitions.

You should rarely need this, as properly configured systems already do this for most keys. How-
ever, some key combinations (CONTROL in conjunction with cursor keys for example) are usually
not defined. If you know the character sequence your system generates for such a combination, you
may use ‘SEQ’ to bind that sequence to a particular key code if that sequence isn’t already defined
on your system. For example, CONTROL-“cursor-left” may generate the sequence \x1b[1;5D.
The following lines bind that sequence to the F10 key code ‘14A’, then bind that key code to the
‘HELP’ command.

SEQ "\x1b[1;5D" 14A

KEY 14A HELP

Sequences are inherently terminal- or terminal emulator-specific, so their utility will vary de-
pending on how many emulators you use. At least they give you the posibility to use keys or key
combinations that aren’t covered by curses.

The key binding file is parsed at startup. If something does not work, ne exits displaying an error
message. If you want ne to skip parsing the key binding file (for instance, to correct the broken file),
just give ne the --no-config argument. See Section 3.1 [Arguments], page 11.

5.2 Changing Menus
ne allows you to change the contents of its menus. To accomplish this task, you have to create a file
named ‘.menus’ in your home directory, or in ‘˜/.ne’. You can change the default name (possibly
specifying a complete path) using the --menus argument (see Section 3.1 [Arguments], page 11).

Chapter 5: Configuration 69

Each line of a menu configuration file not starting with the ‘MENU’ or ‘ITEM’ keywords is con-
sidered a comment. You should describe the menus as in the following example:

MENU "File"

ITEM "Open... ˆO" Open

ITEM "Close " Close

ITEM "DoIt " Macro DoIt

In other words: a line of this form

MENU "title"

will start the definition of a new menu, having the given title. Each line of the form

ITEM "text" command

will then define a menu item, and associate the given command to it.

Any number of menus can be accommodated, but you should consider that many terminals are
80 columns wide. There is also a minor restriction on the items—their width has to be constant
throughout each menu (but different menus can have different widths). Note that the text of an
item, as the name of a menu, is between quotes. Whatever follows the last quote is considered the
command associated to the menu.

Warning: the description of key bindings in menus (‘ˆO’ in the previous example) is very important
for the beginner; there is no relation inside ne about what you say in the menu and how you configure
the key bindings (see Section 5.1 [Key Bindings], page 59). Please do not say things in the menus
that are not true in the key binding file.

The menu configuration file is parsed at startup. If something does not work, ne exits displaying
an error message. If you want ne to skip the menu configuration phase (for instance, to correct the
broken file), just give ne the --no-config argument. See Section 3.1 [Arguments], page 11.

5.3 Virtual Extensions
When a document is loaded or saved under a different name, ne may examine the contents of the
document to determine whether to ignore the corresponding file’s actual or missing extension and
use instead a virtual extension. This affects which AutoPrefs and Syntax settings ne applies to the
document.

The document’s contents are matched against the regular expressions (see see Section 3.8 [Reg-
ular Expressions], page 22) you include in your ‘˜/.ne/.extensions’ file. (There may also be
an ‘extensions’ file (no leading ‘.’) in the global directory.) If ne finds a match it will act as if
the document’s name had the corresponding extension.

Note that by default ne does not override a file’s given extension. However, you can specify
any number of extensions that you would like to allow to be overridden by including lines in your
‘˜/.ne/extensions’ containing only a dot followed by a single extension or shell “glob pattern”.
In particular, .*" would allow overriding all extensions.

Here’s an example ‘˜/.ne/.extensions’ file:

The following patterns match some common command interpreters.

They must match on the first line.

sh 1 ˆ#!\s*/.*\b(bash|sh|ksh|zsh)\s*
csh 1 ˆ#!\s*/.*\b(csh|tcsh)\s*
pl 1 ˆ#!\s*/.*\bperl\b

70 ne’s manual

py 1 ˆ#!\s*/.*\bpython[0-9]*\s*
rb 1 ˆ#!\s*/.*\bruby\s*
xml 1 ˆ<\?xml

These must match in the first 30 and 1000 lines, respectively.

yaml 30 ˆ---$

ini 1000i ˆ\[\s*(\w|[.-])+\s*\]\s*$

You must list the existing extensions you wish to override, one

per line. Shell glob patterns are allowed. Note that ".*" would

allow overriding any extension. (Think before you do that!)

.conf

.tx[0-9]

The only lines which matter consist of a space-delimited set of
extension number regular_expression

or a single ‘.’ followed by a glob pattern. Anything else is treated as a comment. The number must
be a positive integer indicating the maximum line number of the document in which the correspond-
ing regular expression must match. The exception is zero, which allows a match on any line in the
document. (Actually, ne restricts the examined portion of the document to the first 1,000,000 bytes.)
If the number has a lower-case ‘i’ suffix (see the ‘ini’ example above), the corresponding regular
expression is not case sensitive. Trailing spaces are not included as part of the regular expression.

Only the last instance of any extension specification is considered. This allows you to override
any specifications from the global ‘extensions’ file. If you really need two different patterns, join
them into one by concatenating them with a ‘|’ like so:
foo 1000i (pattern_A)|(pattern_B)

Chapter 6: Hints and Tricks 71

6 Hints and Tricks
Use F1 or ESCAPE-ESCAPE, not ESCAPE.

Due to the limitations of the techniques used when communicating with a terminal, it
is not possible to “decide” that the user pressed the ESCAPE key for about a second
after the actual key press (see Section 4.9.12 [EscapeTime], page 43). This means that
you will experience annoying delays when using menus. If you have no F1 key, use
ESCAPE-ESCAPE, or redefine a keystroke assigning the command Escape, and you
will be able to use that keystroke instead of ESCAPE. Unfortunately, some GUI-based
terminals (most notably, gnome-terminal) use F1 for their own purposes; in that
case, you can assign the Escape command to another key (see Chapter 5 [Configura-
tion], page 59).

Check for the presence of a META key.
If your system has a standard META or ALT key, there is a good chance that you have
several other shortcuts. If the built-in META bindings do not work, you must discover
which is the effect of the META in your terminal emulator. Indeed, it is possible in
theory to configure about 150 shortcuts. See Chapter 5 [Configuration], page 59. In
any case, prefixing a key with ESCAPE has the same effect as holding down META, so
with the standard key bindings you can, for instance, advance by word with ESCAPE
followed by F.

When editing very large files, please use the --no-syntax option.
Even if ne will switch transparently to memory-mapped disk files, syntax highlighting
requires a great deal of additional memory.

Mac users should turn on “Delete sends CTRL-H” in the Terminal settings.
If you are a Mac user, you need to check the “Delete sends CTRL-H” option in the
‘Advanced’ tab of the Terminal application settings.

ne does tilda expansion.
When you have to specify a file name, you can always start with ‘˜/’ in order to specify
your home directory, or ‘˜user/’ to specify the home directory of another user.

It is easy to correct bad colors.
Sometimes, due to different opinions about the best default foreground and background
colors, some of the color choices in a syntax file might be unreadable (for instance,
‘dim white’ on a terminal with a white background). Just copy the guilty syntax
specification file to the ‘˜/.ne/syntax’ directory, and change the color names at the
start of the file.

Use the ‘tabs’ syntax to distinguish TABs from SPACEs.
When you’re struggling to clean up a mix of TABs and SPACEs, temporarily switching
to the ‘tabs’ syntax may help. The command Syntax tabs makes TAB characters
show up in a different background color from SPACEs. Once you’ve gotten your white
space issues straightened out, you can switch back to the syntax appropriate for your
current file type.

ne does interactive filename completion.
When you have to specify a file name as last element of a long input, you can invoke
the completer using TAB. If you hit it twice in a row, you will enter the file requester,

72 ne’s manual

where you can navigate and escape back to the command line, either with F1, which
will let you edit again your previous input, or with TAB, which will copy your cur-
rent selection over your previous file name. In other words, you can freely alternate
completion, editing and browsing.

Disable the status bar for slow connections.
ne tries to emit as few characters as possible when updating the screen. However, for
each key you type it is likely that the status bar has to be updated. If your connection
is very slow, you can disable the status bar to get a quicker response (see Section 4.9.9
[StatusBar], page 43).

The ESCAPE delay when activating menus can be avoided.
If you press after ESCAPE any key that does not produce the second character of an
escape sequence, ne will immediately recognize the ESCAPE key code as such. Since
non-alphabetical keys have no effect while browsing through the menus, if you’re
forced to use ESCAPE as menu activator you can press, for instance, ‘,’ just after
it to speed up the menu activation (note that ‘:’ would not work, because it would
activate the command line). Alternatively, you can just type ESCAPE twice in a row.

Use turbo mode for lengthy operations.
Turbo mode (see Section 4.9.17 [Turbo], page 44) allows performing very complex
operations without updating the screen until the operations are complete. This can be
a major plus if you are editing very long files, or if your terminal is slow. If the default
value (0, which means twice the number of visible rows) does not give you the best
results, experiment other values.

Regular expressions are powerful, and slow.
Regular expressions must be studied very carefully. If you spend a lot of time doing
editing, it is definitely reasonable to study even their most esoteric features. Very com-
plex editing actions can be performed by a single find/replace using the \n convention.
But remember always that regular expressions are much slower than a normal search:
in particular, if you use them on a UTF-8 text, ne has to transform them into an equiv-
alent (but more complex) expression that cannot match partially a UTF-8 sequence,
and this expansion makes the search even slower.

Use the correct movement commands in a macro.
Many boring, repetitive editing actions can be performed in a breeze by recording them
the first time. Remember, however, that while recording a complex macro you should
always use a cursor movement that will apply in a different context. For instance, if you
are copying a word, you cannot move with cursor keys, because that word at another
application of the macro could be of a different length. Rather, use the next/previous
word keys and the MoveEOW command, which guarantee a correct behaviour in all
situations.

Some preferences can be preserved even with automatic preferences.
When you save an autoprefs file, the file simply contains a macro that, when executed,
produces the current configuration. However, you could want, for instance, to never
change the insert/overwrite state. In this case, just edit the autoprefs files with ne and
delete the line containing the command setting the insert flag. When the autoprefs are
loaded later, the insert flag will be left untouched. This trick is particularly useful with
the StatusBar and FastGUI commands.

Chapter 6: Hints and Tricks 73

If some keystrokes do not work, check for system-specific features.
Sometimes it can happen that a keystroke does not work—for instance, CONTROL-O
does not open a file. This usually is due to the kernel tracking that key for its purposes.
For instance, along a telnet connection with xon/xoff flow control, CONTROL-S and
CONTROL-Q would block and release the output instead of saving and quitting.
In these cases, if you do not need the system feature you should check how to disable it:
for instance, some BSD-like systems feature a delayed suspend signal that is not in the
POSIX standard, and thus cannot be disabled by ne. On HP-UX, the command stty

dsusp ˆ- would disable the signal, and would let the control sequence previously
assigned to it to run up to ne.

74 ne’s manual

Chapter 7: Motivations and Design 75

7 Motivations and Design

In this chapter I will try to outline the rationale behind ne’s design choices. Moreover, some present,
voluntary limitations of the current implementation will be described. The intended audience of
such a description is the programmer wanting to hack up ne’s sources, or the informed user wanting
to deepen his knowledge of the limitations.

The design goal of ne was to write an editor that is easy to use at first sight, powerful, and
completely configurable. Making ne run on any terminal that vi could handle was also a basic
issue, because there is no use getting accustomed to a new tool if you cannot use it when you really
need it. Finally, using resources sparingly was considered essential.

ne has no concept of mode. All shortcuts are defined by a single key, possibly with a modifier
(such as CONTROL or META). Modality is in my opinion a Bad Thing unless it has a very clear
visual feedback. As an example, menus are a form of modality. After entering the menus, the alpha-
betic keys and the navigation keys have a different meaning. But the modality is clearly reflected
by a change in the user interface. The same can be said about the input line, because it is always
preceded by a (possibly highlighted) prompt ending with a colon.

ne has no sophisticated visual updating system similar to, for instance, the one of curses. All
updating is done while manipulating the text, and only if the turbo flag is set can some iterated
operations delay the update. (In this case, ne keeps track in a very rough way of the part of the
screen that changed.) Moreover, the output is not preempted by additional input coming in, so that
along a slow connection the output could not keep up with the input. However, along reasonably fast
connections, the responsiveness of the editor is greatly enhanced by the direct update. And since
we update the screen in parallel with the internal representation, we can exploit our knowledge to
output a very small number of characters per modification. As it is typical in ne, when such design
tradeoffs arise, preference is given to the solution that is effective on a good part of the existing
hardware and will be very effective on most future hardware.

ne uses a particular scheme for handling text. There is a doubly linked list of line descriptors
that contain pointers to each line of text. The lines themselves are kept in a list of pools, which is
expanded and reduced dynamically. The interesting thing is that for each pool ne keeps track just
of the first and of the last character used. A character is free iff it contains a null, so there is no need
for a list of free chunks. The point is that the free characters lying between that first and the last
used characters (the lost characters) can only be allocated locally: whenever a line has to grow in
length, ne first checks if there are enough free characters around it. Otherwise, it remaps the line
elsewhere. Since editing is essentially a local activity, the number of such lost characters remains
very low. And the manipulation of a line is extremely fast and independent of the size of the file,
which can be very huge. A mathematical analysis of the space/time tradeoff is rather difficult, but
empirical evidence suggests that the idea works.

ne takes the POSIX standard as the basis for UN*X compatibility. The fact that this standard has
been designed by a worldwide recognized and impartial organization such as IEEE makes it in my
opinion the most interesting effort in its league. No attempt is made to support ten thousand different
versions and releases by using conditional compilation. Very few assumptions are made about the
behaviour of the system calls. This has obvious advantages in terms of code testing, maintenance,
and reliability. For the same reasons, the availability of an ANSI C (C99) compiler is assumed.

If the system has a terminfo database and the related functions (which are usually contained
in the curses library), ne will use them. The need for a terminal capability database is clear, and

76 ne’s manual

the choice of terminfo (with respect to termcap) is compulsory if you want to support a series of
features (such as more than ten function keys) that termcap lacks. If terminfo is not available,
ne can use a termcap database, or, as a last resort, a built-in set of ANSI control sequences. Some
details about this can be found in Chapter 10 [Portability Problems], page 71.

ne does not allow redefinition of the ESCAPE, TAB or RETURN keys, nor of the interrupt
character CONTROL-\. This decision has been made mainly for two reasons. First of all, it is
necessary to keep a user from transforming ne’s bindings to such a point that another unaware user
cannot work with it. These two keys and the alphabetic keys allow activating any command without
any further knowledge of the key bindings, so it seems to me this is a good choice. As a second point,
the ESCAPE key usage should generally be avoided. The reason is that most escape sequences that
are produced by special keys start with the escape character. When ESCAPE is pressed, ne has to
wait for one second (this timing can be changed with the EscapeTime command), just to be sure
that it did not receive the first character of an escape sequence. This makes the response of the key
very slow, unless it is immediately followed by another key such as ‘:’, or by ESCAPE, again. See
Chapter 6 [Hints and Tricks], page 63.

Note that, as has been stated several times, the custom key bindings also work when doing a
long input, navigating through the menus or browsing the requester. However, this is only partially
true. To keep the code size and complexity down, in these cases ne recognizes only direct bindings
to commands, and discards the arguments. Thus, for instance, if a key is bound to the command line
LineUp 2, it will act like LineUp, while a binding to Macro MoveItUp would produce no result.
Of course full binding capability is available while writing text. (This limitation will probably be
lifted in a future version: presently it does not seem to limit seriously the configurability of ne.)

ne has some restrictions in its terminal handling. It does not support highlighting on terminals
that use a magic cookie. Supporting such terminals correctly is a royal pain, and I did not have any
means of testing the code anyway. Moreover, they are rather obsolete. Another lack of support is
for the capability strings that specify a file to print or a program to launch in order to initialize the
terminal.

The macro capabilities of ne are rather limited. For instance, you cannot give an argument to
a macro: macros are simply sequences of commands that can be played back automatically. This
makes them very useful for everyday use in a learn/play context, but rather inflexible for extending
the capabilities of the editor.

ne has been written with sparing resource use as a basic goal. Every possible effort has been
made to reduce the use of CPU time and memory, the number of system calls, and the number of
characters output to the terminal. For instance, command parsing is done through hash techniques,
and the escape sequence analysis uses the order structure of strings for minimizing the number of
comparisons. The optimal cursor motion functions were directly copied from emacs. The update
of files using syntax highlighting is as lazy as possible: modifications cause just the update of the
current line, and the rest of the screen is updated only when you move away. The search algorithm is
a simplified version of the Boyer-Moore algorithm that provides high performance with a minimal
setup time. An effort has been taken to move to the text segment all data that do not change during
the program execution. When the status bar is switched off, additional optimizations reduce the
cursor movement to a minimum.

A word should be said about lists. Clearly, handling the text as a single block with an insertion
gap (a la emacs) allows you to gain some memory. However, the management of the text as a
linked list requires much less CPU time, and the tradeoff seems to be particularly favorable on

Chapter 7: Motivations and Design 77

virtual memory systems, where moving the insertion gap can require a lot of accesses to different
pages.

78 ne’s manual

Chapter 8: The Encoding Mess 79

8 The Encoding Mess

ne supports UTF-8. It can use UTF-8 for its input/output, and it can also interpret one or more
documents as containing UTF-8 encoded text, acting accordingly. Note that the document content is
actual UTF-8 text—ne does not use wide characters. As a positive side-effect, ne can support fully
the ISO-10646 standard, but nonetheless non-UTF-8 texts occupy exactly one byte per character.

More precisely, any piece of text in ne is classified as US-ASCII, 8-bit or UTF-8. A US-ASCII
text contains only US-ASCII characters. An 8-bit text sports a one-to-one correspondence between
characters and bytes, whereas an UTF-8 text is interpreted in UTF-8. Of course, this raises a difficult
question: when should a document be classified as UTF-8?

Character encodings are a mess. There is nothing we can do to change this fact, as character
encodings are metadata that modify data semantics. The same file may represent different texts of
different lengths when interpreted with different encodings. Thus, there is no safe way of guessing
the encoding of a file.

ne stays on the safe side: it will never try to convert a file from an encoding to another one. It
can, however, interpret data contained in a document depending on an encoding: in other words,
encodings are truly treated as metadata. You can switch off UTF-8 at any time, and see the same
document as a standard 8-bit file.

Moreover, ne uses a lazy approach to the problem: first of all, unless the UTF-8 automatic
detection flag is set (see Section 4.9.32 [UTF8Auto], page 48), no attempt is ever made to consider
a file as UTF-8 encoded. Every file, clip, command line, etc., is firstly scanned for non-US-ASCII
characters: if it is entirely made of US-ASCII characters, it is classified as US-ASCII. An US-
ASCII piece of text is compatible with anything else—it may be pasted in any document, or, if it is
a document, it may accept any form of text. Documents classified as US-ASCII are distinguished
by an ‘A’ on the status bar.

As soon as a user action forces a choice of encoding (e.g., an accented character is typed, or an
UTF-8-encoded clip is pasted), ne fixes the mode to 8-bit or UTF-8 (when there is a choice, this
depends on the value of the Section 4.9.32 [UTF8Auto], page 48 flag). Of course, in some cases
this may be impossible, and in that case an error will be reported.

All this happens behind the scenes, and it is designed so that in 99% of the cases there is no need
to think of encodings. In any case, should ne’s behaviour not match your needs, you can always
change at run time the level of UTF-8 support.

80 ne’s manual

Chapter 9: History 81

9 History

The main inspiration for this work came from Martin Taillefer’s TurboText for the Amiga, which
is the best editor I ever saw on any computer.

The first versions of ne were created on an Amiga 3000T, using the port of the curses library
by Simon John Raybould. After switching to the lower-level terminfo library, the development
continued under UN*X. Finally, I ported terminfo to the Amiga, thus making it possible to develop
on that platform again. For ne 1.0, an effort has been made to provide a terminfo emulation using
GNU’s termcap. The development eventually moved to Linux.

Todd Lewis got involved with ne when the University of North Carolina’s Chapel Hill campus
migrated its central research computers from MVS to UNIX in 1995. The readily available UNIX

editors had serious weaknesses in their user interfaces, especially from the standpoint of MVS users
who were not too excited about having to move their projects to another platform while learning
an entirely new suite of tools. ne offered an easily understood interface with enough capabilities to
keep these new UNIX users productive. Todd installed and has maintained ne at UNC since then,
making several improvements to the code to meet his users’ needs. In early 1999 his code base and
mine were merged to become version 1.17.

Support for syntax highlighting was added in 2009 with code and techniques heavily borrowed
from the GNU-licensed editor joe, which was written by Joseph H. Allen. Much of the work to
incorporate this code into ne was undertaken by Daniele Filaretti, an undergraduate student working
under the direction of Sebastiano at the Università degli Studi di Milano.

82 ne’s manual

Chapter 10: Portability Problems 83

10 Portability Problems

This chapter is devoted to the description of the (hopefully very few) problems that could arise when
porting ne to other flavors of UN*X.

The fact that only POSIX calls have been used (see Chapter 7 [Motivations and Design], page 65)
should guarantee that on POSIX-compliant systems a recompilation should suffice. Unfortunately,
terminfo has not been standardized by IEEE, so that different calls could be available. The nec-
essary calls are setupterm(), tparm() and tputs(). The other terminfo functions are never
used.

If terminfo is not available, the source files ‘info2cap.c’ and ‘info2cap.h’ map terminfo
calls on termcap calls. The complete GNU termcap sources are distributed with ne, so no library
at all is needed to use them. You just have to compile using one of the options explained in the
‘makefile’ and in the ‘README’. Should you need comprehensive information on GNU termcap,
you can find the distribution files on any ftp site that distributes the GNU archives. I should note
that the GNU termcap manual is definitely the best manual ever written about terminal databases.

There are, however, some details that are not specified by POSIX, or are specified with insufficient
precision. The places of the source where such details come to the light are evidenced by the
‘PORTABILITY PROBLEM’ string, which is followed by a complete explanation of the problem.

For instance, there is no standard way of printing extended ASCII characters (i.e., characters
whose code is smaller than 32 or greater than 126). On many system, these characters have to be
filtered and replaced with something printable: the default behaviour is to add 64 to all characters
under 32 (so that control characters will translate to the respective letter) and to print them in reverse
video; moreover, all characters between 127 and 160 are visualized as a reversed question mark (this
works particularly well with ISO Latin 1, but Windows users might not like it). This behavior can
be easily changed by modifying the out() function in ‘term.c’.

Note that it is certainly possible that some system features not standardized by POSIX interfere
with ne’s use of the I/O stream. Such problems should be dealt with locally by using the system
facilities rather than by horribly #ifdef’ing the source code. An example is given in Chapter 6
[Hints and Tricks], page 63.

84 ne’s manual

Chapter 11: Acknowledgments 85

11 Acknowledgments

A lot of people contributed to this project. Part of the code comes from emacs and joe. Many
people, in particular at the silab (the Milan University Computer Science Department Laboratory),
helped in beta testing the first versions. Daniele Filaretti worked at the integration of syntax-
highlighting code from joe. John Gabriele suggested several new features and relentlessly tested
them.

Comments, complaints, desiderata are welcome.
Sebastiano Vigna

Via California 22

I-20144 Milano MI

Italia

sebastiano.vigna@unimi.it

Todd M. Lewis

CB 1150 2210 ITS Franklin

University of North Carolina

Chapel Hill, NC 27599-1150

USA

Todd_Lewis@unc.edu

ne home page: http://ne.di.unimi.it/

Discuss ne at http://groups.google.com/group/niceeditor/

Github repo: https://github.com/vigna/ne/

http://ne.di.unimi.it/
http://groups.google.com/group/niceeditor/
https://github.com/vigna/ne/

86 ne’s manual

Concept Index 87

Concept Index

A
Amiga . 69
Arguments . 11
Automatic Bracket Matching . 9
Automatic Completion . 9
Automatic preferences . 6, 25

B
Binary files . 9, 41
Block operations . 5
Bookmarks . 9
Buffer . 3

C
Caching a macro . 7
Changing colors . 63
Clip usage . 5
Closing a document . 4
Command arguments . 27
Command line . 3, 15
Commands . 27
Comments in a macro . 7
Configuring the keyboard . 59
Configuring the menus . 60
Control key . 3
curses . 65

D
Deleting characters . 5
Deleting lines . 5
Document . 3

E
Emergency Save . 25
Escape conventions . 27
Escape usage . 63
Escaping an input . 14
Executing a macro . 7
Executing UNI*X commands . 9
Exiting . 4
Extension by Content . 61

F
Fast GUI . 12
Features . 1
File . 3
File name completion . 14
File requester . 4, 9, 15
Flags . 6, 27

G
Global Directory . 11

H
Help requester . 15

I
Immediate input . 14
Input line . 14
Insert mode . 6
Interrupt character . 7, 65
Interrupting a macro . 7
Interrupting directory scanning . 15
ISO-8859 family . 67
ISO-8859-1 . 67

K
Key bindings . 59
Keyboard usage . 3

L
Large files . 63
Line and column numbers . 12
LITHP . 1
Loading a file . 4
Long input . 14
Long names . 27

M
Macro definition . 7
Magic cookie terminals . 65
Menu bar . 3
Menu usage . 3
Menus . 17
Meta key . 3, 59, 63
Mode . 65
MS-DOS files . 9
Multiple documents . 5

O
Opening a file . 4

P
Portability . 71
POSIX . 1, 65, 71
Preferences . 6

88 ne’s manual

Printable characters . 71

Q
Quitting . 4
Quoting conventions . 27

R
Recording a macro . 7
Regular Expressions . 22
Repeating actions . 27
Requester . 15
Resource usage . 65

S
Saving a file . 4
Saving a macro . 7
Setting configuration file names 11
Short names . 27
Shortcuts . 3
Shortcuts not working . 63
Skipping configuration files . 11
Startup macro . 11
Status bar . 3, 12

Syntax Highlighting . 16

T
termcap . 1, 65, 71
terminfo . 1, 65, 71
Turbo adjustment . 63
TurboText . 69

U
Undeleting lines . 5
Unloading macros . 7
UTF-8 . 67
UTF-8 support . 9
UTF-8 Support . 25

V
vi . 1
Virtual Extensions . 6, 61

W
Writing a file . 4

Command Index 89

Command Index

A
About . 55
AdjustView . 52
Alert . 55
AtomicUndo . 38
AutoComplete . 35
AutoIndent . 40
AutoMatchBracket . 35
AutoPrefs . 41

B
Backspace . 54
Beep . 55
Binary . 41

C
Capitalize . 39
CaseSearch . 35
Center . 38
Clear . 29
ClipNumber . 32
CloseDoc . 29
Copy . 31
CRLF . 45
Cut . 31

D
DeleteChar . 54
DeleteEOL . 55
DeleteLine . 55
DeleteNextWord . 54
DeletePrevWord . 54
DelTabs . 44
DoUndo . 38

E
Erase . 31
Escape . 56
EscapeTime . 43
Exec . 55
Exit . 29

F
FastGUI . 42
Find . 33
FindRegExp . 33
Flags . 40
Flash . 55
FreeForm . 42

G
GotoBookmark . 53
GotoColumn . 50
GotoLine . 49
GotoMark . 50

H
Help . 56
HexCode . 43

I
Insert . 42
InsertChar . 53
InsertLine . 54
InsertString . 54
InsertTab . 54

K
KeyCode . 56

L
LineDown . 49
LineUp . 49
LoadAutoPrefs . 47
LoadPrefs . 46

M
Macro . 36
Mark . 30
MarkVert . 30
MatchBracket . 34
Modified . 47
MoveBOS . 51
MoveEOF . 51
MoveEOL . 51
MoveEOW . 51
MoveIncDown . 52
MoveIncUp . 51
MoveLeft . 49
MoveRight . 49
MoveSOF . 51
MoveSOL . 51
MoveTOS . 51

N
NameConvert . 57
NewDoc . 29
NextDoc . 30

90 ne’s manual

NextPage . 50
NextWord . 51
NoFileReq . 42
NOP . 56

O
Open . 28
OpenClip . 32
OpenMacro . 37
OpenNew . 28

P
PageDown . 50
PageUp . 50
Paragraph . 39
Paste . 31
PasteVert . 31
Play . 36
PopPrefs . 46
PreserveCR . 45
PrevDoc . 30
PrevPage . 50
PrevWord . 50
PushPrefs . 45

Q
Quit . 29

R
ReadOnly . 43
Record . 36
Redo . 37
Refresh . 56
RepeatLast . 34
Replace . 33
ReplaceAll . 34
ReplaceOnce . 34
RequestOrder . 42
RightMargin . 39

S
Save . 28

SaveAll . 29
SaveAs . 28
SaveAutoPrefs . 47
SaveClip . 32
SaveDefPrefs . 47
SaveMacro . 37
SavePrefs . 46
SearchBack . 35
SelectDoc . 30
SetBookmark . 52
Shift . 31
ShiftTabs . 44
StatusBar . 43
Suspend . 56
Syntax . 47
System . 56

T
Tabs . 44
TabSize . 43
Through . 32
ToggleSEOF . 52
ToggleSEOL . 52
ToLower . 39
ToUpper . 39
Turbo . 44

U
UndelLine . 38
Undo . 37
UnloadMacros . 37
UnsetBookmark . 53
UTF8 . 48
UTF8Auto . 48
UTF8IO . 49

V
VerboseMacros . 45
VisualBell . 45

W
WordWrap . 40

i

Table of Contents

1 Introduction . 1

2 Basics . 3
2.1 Terminology . 3
2.2 Starting . 3
2.3 Loading and Saving . 5
2.4 Editing . 6
2.5 Basic Preferences . 6
2.6 Basic Macros . 8
2.7 More Advanced Features . 10

2.7.1 UTF-8 support . 10
2.7.2 Bookmarks . 10
2.7.3 Automatic Completion . 10
2.7.4 Automatic Bracket Matching . 11
2.7.5 MS-DOS files . 11
2.7.6 Binary files . 11
2.7.7 File requester . 11
2.7.8 Executing UN*X commands . 11
2.7.9 Advanced key bindings . 12

3 Reference . 13
3.1 Arguments . 13
3.2 The Status Bar . 15
3.3 The Input Line . 16
3.4 The Command Line . 17
3.5 The Requester . 18
3.6 Syntax Highlighting . 19
3.7 Menus . 20

3.7.1 File . 21
3.7.2 Documents . 21
3.7.3 Edit . 22
3.7.4 Search . 22
3.7.5 Macros . 23
3.7.6 Extras . 23
3.7.7 Navigation . 24
3.7.8 Prefs . 25

3.8 Regular Expressions . 26
3.8.1 Syntax . 26
3.8.2 Replacing regular expressions . 29

3.9 Automatic Preferences . 29
3.10 Emergency Save . 30
3.11 UTF-8 Support . 30

ii ne’s manual

4 Commands . 31
4.1 General Guidelines . 31
4.2 File Commands . 32

4.2.1 Open . 32
4.2.2 OpenNew . 32
4.2.3 Save . 32
4.2.4 SaveAs . 33
4.2.5 SaveAll . 33

4.3 Document Commands . 33
4.3.1 Quit . 33
4.3.2 Exit . 33
4.3.3 NewDoc . 34
4.3.4 Clear . 34
4.3.5 CloseDoc . 34
4.3.6 NextDoc . 34
4.3.7 PrevDoc . 34
4.3.8 SelectDoc . 34

4.4 Clip Commands . 35
4.4.1 Mark . 35
4.4.2 MarkVert . 35
4.4.3 Copy . 36
4.4.4 Cut . 36
4.4.5 Paste . 36
4.4.6 PasteVert . 36
4.4.7 Erase . 36
4.4.8 Shift . 36
4.4.9 OpenClip . 37
4.4.10 SaveClip . 37
4.4.11 ClipNumber . 37
4.4.12 Through . 37

4.5 Search Commands . 37
4.5.1 Find . 38
4.5.2 FindRegExp . 38
4.5.3 Replace . 38
4.5.4 ReplaceOnce . 39
4.5.5 ReplaceAll . 39
4.5.6 RepeatLast . 39
4.5.7 MatchBracket . 40
4.5.8 AutoMatchBracket . 40
4.5.9 SearchBack . 40
4.5.10 CaseSearch . 40
4.5.11 AutoComplete . 40

4.6 Macros Commands . 41
4.6.1 Record . 41
4.6.2 Play . 41
4.6.3 Macro . 42
4.6.4 OpenMacro . 42
4.6.5 SaveMacro . 42

iii

4.6.6 UnloadMacros . 43
4.7 Undo Commands . 43

4.7.1 Undo . 43
4.7.2 Redo . 43
4.7.3 UndelLine . 43
4.7.4 DoUndo . 44
4.7.5 AtomicUndo . 44

4.8 Formatting Commands . 44
4.8.1 Center . 44
4.8.2 Paragraph . 45
4.8.3 ToUpper . 45
4.8.4 ToLower . 45
4.8.5 Capitalize . 45
4.8.6 RightMargin . 45
4.8.7 WordWrap . 46
4.8.8 AutoIndent . 46

4.9 Preferences Commands . 46
4.9.1 Flags . 47
4.9.2 AutoPrefs . 47
4.9.3 Binary . 48
4.9.4 Insert . 48
4.9.5 FastGUI . 48
4.9.6 FreeForm . 49
4.9.7 NoFileReq . 49
4.9.8 RequestOrder . 49
4.9.9 StatusBar . 49
4.9.10 HexCode . 50
4.9.11 ReadOnly . 50
4.9.12 EscapeTime . 50
4.9.13 TabSize . 50
4.9.14 Tabs . 50
4.9.15 DelTabs . 51
4.9.16 ShiftTabs . 51
4.9.17 Turbo . 51
4.9.18 VerboseMacros . 52
4.9.19 PreserveCR . 52
4.9.20 CRLF . 52
4.9.21 VisualBell . 52
4.9.22 PushPrefs . 53
4.9.23 PopPrefs . 53
4.9.24 LoadPrefs . 53
4.9.25 SavePrefs . 54
4.9.26 LoadAutoPrefs . 54
4.9.27 SaveAutoPrefs . 54
4.9.28 SaveDefPrefs . 54
4.9.29 Modified . 54
4.9.30 Syntax . 55
4.9.31 UTF8 . 55

iv ne’s manual

4.9.32 UTF8Auto . 56
4.9.33 UTF8IO . 56

4.10 Navigation Commands . 56
4.10.1 MoveLeft . 56
4.10.2 MoveRight . 57
4.10.3 LineUp . 57
4.10.4 LineDown . 57
4.10.5 GotoLine . 57
4.10.6 GotoColumn . 57
4.10.7 GotoMark . 57
4.10.8 PrevPage . 57
4.10.9 NextPage . 58
4.10.10 PageUp . 58
4.10.11 PageDown . 58
4.10.12 PrevWord . 58
4.10.13 NextWord . 58
4.10.14 MoveEOL . 58
4.10.15 MoveSOL . 58
4.10.16 MoveTOS . 59
4.10.17 MoveBOS . 59
4.10.18 MoveEOF . 59
4.10.19 MoveSOF . 59
4.10.20 MoveEOW . 59
4.10.21 MoveIncUp . 59
4.10.22 MoveIncDown . 59
4.10.23 AdjustView . 60
4.10.24 ToggleSEOF . 60
4.10.25 ToggleSEOL . 60
4.10.26 SetBookmark . 60
4.10.27 GotoBookmark . 61
4.10.28 UnsetBookmark . 61

4.11 Editing Commands . 61
4.11.1 InsertChar . 61
4.11.2 InsertString . 62
4.11.3 InsertTab . 62
4.11.4 DeleteChar . 62
4.11.5 DeletePrevWord . 62
4.11.6 DeleteNextWord . 62
4.11.7 Backspace . 63
4.11.8 InsertLine . 63
4.11.9 DeleteLine . 63
4.11.10 DeleteEOL . 63

4.12 Support Commands . 63
4.12.1 About . 63
4.12.2 Alert . 63
4.12.3 Beep . 63
4.12.4 Exec . 64
4.12.5 Flash . 64

v

4.12.6 Help . 64
4.12.7 NOP . 64
4.12.8 Refresh . 64
4.12.9 Suspend . 65
4.12.10 System . 65
4.12.11 Escape . 65
4.12.12 KeyCode . 65
4.12.13 NameConvert . 65

5 Configuration . 67
5.1 Key Bindings . 67
5.2 Changing Menus . 68
5.3 Virtual Extensions . 69

6 Hints and Tricks . 71

7 Motivations and Design . 75

8 The Encoding Mess . 79

9 History . 81

10 Portability Problems . 83

11 Acknowledgments . 85

Concept Index . 87

Command Index . 89

vi ne’s manual

	Introduction
	Basics
	Terminology
	Starting
	Loading and Saving
	Editing
	Basic Preferences
	Basic Macros
	More Advanced Features
	UTF-8 support
	Bookmarks
	Automatic Completion
	Automatic Bracket Matching
	MS-DOS files
	Binary files
	File requester
	Executing un*x commands
	Advanced key bindings

	Reference
	Arguments
	The Status Bar
	The Input Line
	The Command Line
	The Requester
	Syntax Highlighting
	Menus
	File
	Documents
	Edit
	Search
	Macros
	Extras
	Navigation
	Prefs

	Regular Expressions
	Syntax
	Replacing regular expressions

	Automatic Preferences
	Emergency Save
	UTF-8 Support

	Commands
	General Guidelines
	File Commands
	Open
	OpenNew
	Save
	SaveAs
	SaveAll

	Document Commands
	Quit
	Exit
	NewDoc
	Clear
	CloseDoc
	NextDoc
	PrevDoc
	SelectDoc

	Clip Commands
	Mark
	MarkVert
	Copy
	Cut
	Paste
	PasteVert
	Erase
	Shift
	OpenClip
	SaveClip
	ClipNumber
	Through

	Search Commands
	Find
	FindRegExp
	Replace
	ReplaceOnce
	ReplaceAll
	RepeatLast
	MatchBracket
	AutoMatchBracket
	SearchBack
	CaseSearch
	AutoComplete

	Macros Commands
	Record
	Play
	Macro
	OpenMacro
	SaveMacro
	UnloadMacros

	Undo Commands
	Undo
	Redo
	UndelLine
	DoUndo
	AtomicUndo

	Formatting Commands
	Center
	Paragraph
	ToUpper
	ToLower
	Capitalize
	RightMargin
	WordWrap
	AutoIndent

	Preferences Commands
	Flags
	AutoPrefs
	Binary
	Insert
	FastGUI
	FreeForm
	NoFileReq
	RequestOrder
	StatusBar
	HexCode
	ReadOnly
	EscapeTime
	TabSize
	Tabs
	DelTabs
	ShiftTabs
	Turbo
	VerboseMacros
	PreserveCR
	CRLF
	VisualBell
	PushPrefs
	PopPrefs
	LoadPrefs
	SavePrefs
	LoadAutoPrefs
	SaveAutoPrefs
	SaveDefPrefs
	Modified
	Syntax
	UTF8
	UTF8Auto
	UTF8IO

	Navigation Commands
	MoveLeft
	MoveRight
	LineUp
	LineDown
	GotoLine
	GotoColumn
	GotoMark
	PrevPage
	NextPage
	PageUp
	PageDown
	PrevWord
	NextWord
	MoveEOL
	MoveSOL
	MoveTOS
	MoveBOS
	MoveEOF
	MoveSOF
	MoveEOW
	MoveIncUp
	MoveIncDown
	AdjustView
	ToggleSEOF
	ToggleSEOL
	SetBookmark
	GotoBookmark
	UnsetBookmark

	Editing Commands
	InsertChar
	InsertString
	InsertTab
	DeleteChar
	DeletePrevWord
	DeleteNextWord
	Backspace
	InsertLine
	DeleteLine
	DeleteEOL

	Support Commands
	About
	Alert
	Beep
	Exec
	Flash
	Help
	NOP
	Refresh
	Suspend
	System
	Escape
	KeyCode
	NameConvert

	Configuration
	Key Bindings
	Changing Menus
	Virtual Extensions

	Hints and Tricks
	Motivations and Design
	The Encoding Mess
	History
	Portability Problems
	Acknowledgments
	Concept Index
	Command Index

