NAME
Data::Stag - Structured Tags datastructures
SYNOPSIS
# PROCEDURAL USAGE
use Data::Stag qw(:all);
$doc = stag_parse($file);
@persons = stag_find($doc, "person");
foreach $p (@persons) {
printf "%s, %s phone: %s\n",
stag_sget($p, "family_name"),
stag_sget($p, "given_name"),
stag_sget($p, "phone_no"),
;
}
# OBJECT-ORIENTED USAGE
use Data::Stag;
$doc = Data::Stag->parse($file);
@persons = $doc->find("person");
foreach $p (@person) {
printf "%s, %s phone:%s\n",
$p->sget("family_name"),
$p->sget("given_name"),
$p->sget("phone_no"),
;
}
DESCRIPTION
This module is for manipulating data as hierarchical tag/value pairs
(Structured TAGs or Simple Tree AGgreggates). These datastructures can
be represented as nested arrays, which have the advantage of being
native to perl. A simple example is shown below:
[ person=> [ [ family_name => $family_name ],
[ given_name => $given_name ],
[ phone_no => $phone_no ] ] ],
the Data::Stag manpage uses a subset of XML for import and export. This
means the module can also be used as a general XML parser/writer (with
certain caveats).
The above set of structured tags can be represented in XML as
...
...
...
This datastructure can be examined, manipulated and exported using Stag
functions or methods:
$document = Data::Stag->parse($file);
@persons = $document->find('person');
foreach my $person (@person) {
$person->set('full_name',
$person->sget('given_name') . ' ' .
$person->sget('family_name'));
}
Advanced querying is performed by passing functions, for example:
# get all people in dataset with name starting 'A'
@persons =
$document->where('person',
sub {shift->sget('family_name') =~ /^A/});
One of the things that marks this module out against other XML modules
is this emphasis on a functional approach as an obect-oriented or
procedural approach.
PROCEDURAL VS OBJECT-ORIENTED USAGE
Depending on your preference, this module can be used a set of
procedural subroutine calls, or as method calls upon Data::Stag objects,
or both.
In procedural mode, all the subroutine calls are prefixed "stag_" to
avoid namespace clashes. The following three calls are equivalent:
$person = stag_find($doc, "person");
$person = $doc->find("person");
$person = $doc->find_person;
In object mode, you can treat any tree element as if it is an object
with automatically defined methods for getting/setting the tag values.
USE OF XML
Nested arrays can be imported and exported as XML, as well as other
formats. XML can be slurped into memory all at once (using less memory
than an equivalent DOM tree), or a simplified SAX style event handling
model can be used. Similarly, data can be exported all at once, or as a
series of events.
Although this module can be used as a general XML tool, it is intended
primarily as a tool for manipulating hierarchical data using nested
tag/value pairs.
By using a simpler subset of XML equivalent to a basic data tree
structure, we can write simpler, cleaner code. This simplicity comes at
a price - this module is not very suitable for XML with attributes or
mixed content.
All attributes are turned into elements. This means that it will not
round-trip a piece of xml with attributes in it. For some applications
this is acceptable, for others it is not.
Mixed content cannot be represented in a simple tree format, so this is
also expanded.
The following piece of XML
example of mixedcontent
gets parsed as if it were actually:
1
example of
mixed
content
This module is more suited to dealing with data-oriented documents than
text-oriented documents.
It can also be used as part of a SAX-style event generation / handling
framework - see the Data::Stag::BaseHandler manpage
Because nested arrays are native to perl, we can specify an XML
datastructure directly in perl without going through multiple object
calls.
For example, instead of the lengthy
$obj->startTag("record");
$obj->startTag("field1");
$obj->characters("foo");
$obj->endTag("field1");
$obj->startTag("field2");
$obj->characters("bar");
$obj->endTag("field2");
$obj->end("record");
We can instead write
$struct = [ record => [
[ field1 => 'foo'],
[ field2 => 'bar']]];
PARSING
The following example is for parsing out subsections of a tree and
changing sub-elements
use Data::Stag qw(:all);
my $tree = stag_parse($xmlfile);
my ($subtree) = stag_findnode($tree, $element);
stag_set($element, $sub_element, $new_val);
print stag_xml($subtree);
OBJECT ORIENTED
The same can be done in a more OO fashion
use Data::Stag qw(:all);
my $tree = Data::Stag->parse($xmlfile);
my ($subtree) = $tree->findnode($element);
$element->set($sub_element, $new_val);
print $subtree->xml;
IN A STREAM
Rather than parsing in a whole file into memory all at once (which may
not be suitable for very large files), you can take an event handling
approach. The easiest way to do this to register which nodes in the file
you are interested in using the makehandler method. The parser will
sweep through the file, building objects as it goes, and handing the
object to a subroutine that you specify.
For example:
use Data::Stag;
# catch the end of 'person' elements
my $h = Data::Stag->makehandler( person=> sub {
my ($self, $person) = @_;
printf "name:%s phone:%s\n",
$person->get_name,
$person->get_phone;
return; # clear node
});
Data::Stag->parse(-handler=>$h,
-file=>$f);
see the Data::Stag::BaseHandler manpage for writing handlers
See the Stag website at http://stag.sourceforge.net for more examples.
STRUCTURED TAGS TREE DATA STRUCTURE
A tree of structured tags is represented as a recursively nested array,
the elements of the array represent nodes in the tree.
A node is a name/data pair, that can represent tags and values. A node
is represented using a reference to an array, where the first element of
the array is the tagname, or element, and the second element is the data
This can be visualised as a box:
+-----------+
|Name | Data|
+-----------+
In perl, we represent this pair as a reference to an array
[ Name => $Data ]
The Data can either be a list of child nodes (subtrees), or a data
value.
The terminal nodes (leafs of the tree) contain data values; this is
represented in perl using primitive scalars.
For example:
[ Name => 'Fred' ]
For non-terminal nodes, the Data is a reference to an array, where each
element of the the array is a new node.
+-----------+
|Name | Data|
+-----------+
||| +-----------+
||+-->|Name | Data|
|| +-----------+
||
|| +-----------+
|+--->|Name | Data|
| +-----------+
|
| +-----------+
+---->|Name | Data|
+-----------+
In perl this would be:
[ Name => [
[Name1 => $Data1],
[Name2 => $Data2],
[Name3 => $Data3],
]
];
The extra level of nesting is required to be able to store any node in
the tree using a single variable. This representation has lots of
advantages over others, eg hashes and mixed hash/array structures.
MANIPULATION AND QUERYING
The following example is taken from biology; we have a list of species
(mouse, human, fly) and a list of genes found in that species. These are
cross-referenced by an identifier called tax_id. We can do a
relational-style inner join on this identifier, as follows -
use Data::Stag qw(:all);
my $tree =
Data::Stag->new(
'db' => [
[ 'species_set' => [
[ 'species' => [
[ 'common_name' => 'house mouse' ],
[ 'binomial' => 'Mus musculus' ],
[ 'tax_id' => '10090' ]]],
[ 'species' => [
[ 'common_name' => 'fruit fly' ],
[ 'binomial' => 'Drosophila melanogaster' ],
[ 'tax_id' => '7227' ]]],
[ 'species' => [
[ 'common_name' => 'human' ],
[ 'binomial' => 'Homo sapiens' ],
[ 'tax_id' => '9606' ]]]]],
[ 'gene_set' => [
[ 'gene' => [
[ 'symbol' => 'HGNC' ],
[ 'tax_id' => '9606' ],
[ 'phenotype' => 'Hemochromatosis' ],
[ 'phenotype' => 'Porphyria variegata' ],
[ 'GO_term' => 'iron homeostasis' ],
[ 'map' => '6p21.3' ]]],
[ 'gene' => [
[ 'symbol' => 'Hfe' ],
[ 'synonym' => 'MR2' ],
[ 'tax_id' => '10090' ],
[ 'GO_term' => 'integral membrane protein' ],
[ 'map' => '13 A2-A4' ]]]]]]
);
# inner join of species and gene parts of tree,
# based on 'tax_id' element
my $gene_set = $tree->find("gene_set"); # get element
my $species_set = $tree->find("species_set"); # get element
$gene_set->ijoin("gene", "tax_id", $species_set); # INNER JOIN
print "Reorganised data:\n";
print $gene_set->xml;
# find all genes starting with letter 'H' in where species/common_name=human
my @genes =
$gene_set->where('gene',
sub { my $g = shift;
$g->get_symbol =~ /^H/ &&
$g->findval("common_name") eq ('human')});
print "Human genes beginning 'H'\n";
print $_->xml foreach @genes;
S-Expression (Lisp) representation
The data represented using this module can be represented as Lisp-style
S-Expressions.
See the Data::Stag::SxprParser manpage and the Data::Stag::SxprWriter
manpage
If we execute this code on the XML from the example above
$stag = Data::Stag->parse($xmlfile);
print $stag->sxpr;
The following S-Expression will be printed:
'(db
(species_set
(species
(common_name "house mouse")
(binomial "Mus musculus")
(tax_id "10090"))
(species
(common_name "fruit fly")
(binomial "Drosophila melanogaster")
(tax_id "7227"))
(species
(common_name "human")
(binomial "Homo sapiens")
(tax_id "9606")))
(gene_set
(gene
(symbol "HGNC")
(tax_id "9606")
(phenotype "Hemochromatosis")
(phenotype "Porphyria variegata")
(GO_term "iron homeostasis")
(map
(cytological
(chromosome "6")
(band "p21.3"))))
(gene
(symbol "Hfe")
(synonym "MR2")
(tax_id "10090")
(GO_term "integral membrane protein")))
(similarity_set
(pair
(symbol "HGNC")
(symbol "Hfe"))
(pair
(symbol "WNT3A")
(symbol "Wnt3a"))))
TIPS FOR EMACS USERS AND LISP PROGRAMMERS
If you use emacs, you can save this as a file with the ".el" suffix and
get syntax highlighting for editing this file. Quotes around the
terminal node data items are optional.
If you know emacs lisp or any other lisp, this also turns out to be a
very nice language for manipulating these datastructures. Try copying
and pasting the above s-expression to the emacs scratch buffer and
playing with it in lisp.
INDENTED TEXT REPRESENTATION
Data::Stag has its own text format for writing data trees. Again, this
is only possible because we are working with a subset of XML (no
attributes, no mixed elements). The data structure above can be written
as follows -
db:
species_set:
species:
common_name: house mouse
binomial: Mus musculus
tax_id: 10090
species:
common_name: fruit fly
binomial: Drosophila melanogaster
tax_id: 7227
species:
common_name: human
binomial: Homo sapiens
tax_id: 9606
gene_set:
gene:
symbol: HGNC
tax_id: 9606
phenotype: Hemochromatosis
phenotype: Porphyria variegata
GO_term: iron homeostasis
map: 6p21.3
gene:
symbol: Hfe
synonym: MR2
tax_id: 10090
GO_term: integral membrane protein
map: 13 A2-A4
similarity_set:
pair:
symbol: HGNC
symbol: Hfe
pair:
symbol: WNT3A
symbol: Wnt3a
See the Data::Stag::ITextParser manpage and the Data::Stag::ITextWriter
manpage
NESTED ARRAY SPECIFICATION II
To avoid excessive square bracket usage, you can specify a structure
like this:
use Data::Stag qw(:all);
*N = \&stag_new;
my $tree =
N(top=>[
N('personset'=>[
N('person'=>[
N('name'=>'davey'),
N('address'=>'here'),
N('description'=>[
N('hair'=>'green'),
N('eyes'=>'two'),
N('teeth'=>5),
]
),
N('pets'=>[
N('petname'=>'igor'),
N('petname'=>'ginger'),
]
),
],
),
N('person'=>[
N('name'=>'shuggy'),
N('address'=>'there'),
N('description'=>[
N('hair'=>'red'),
N('eyes'=>'three'),
N('teeth'=>1),
]
),
N('pets'=>[
N('petname'=>'thud'),
N('petname'=>'spud'),
]
),
]
),
]
),
N('animalset'=>[
N('animal'=>[
N('name'=>'igor'),
N('class'=>'rat'),
N('description'=>[
N('fur'=>'white'),
N('eyes'=>'red'),
N('teeth'=>50),
],
),
],
),
]
),
]
);
# find all people
my @persons = stag_find($tree, 'person');
# write xml for all red haired people
foreach my $p (@persons) {
print stag_xml($p)
if stag_tmatch($p, "hair", "red");
} ;
# find all people that have name == shuggy
my @p =
stag_qmatch($tree,
"person",
"name",
"shuggy");
NODES AS DATA OBJECTS
As well as the methods listed below, a node can be treated as if it is a
data object of a class determined by the element.
For example, the following are equivalent.
$node->get_name;
$node->get('name');
$node->set_name('fred');
$node->set('name', 'fred');
This is really just syntactic sugar. The autoloaded methods are not
checked against any schema, although this may be added in future.
STAG METHODS
All method calls are also available as procedural subroutine calls;
unless otherwise noted, the subroutine call is the same as the method
call, but with the string stag_ prefixed to the method name. The first
argument should be a Data::Stag datastructure.
To import all subroutines into the current namespace, use this idiom:
use Data::Stag qw(:all);
$doc = stag_parse($file);
@persons = stag_find($doc, 'person');
If you wish to use this module procedurally, and you are too lazy to
prefix all calls with stag_, use this idiom:
use Data::Stag qw(:lazy);
$doc = parse($file);
@persons = find($doc, 'person');
But beware of clashes!
Most method calls also have a handy short mnemonic. Use of these is
optional. Software engineering types prefer longer names, in the belief
that this leads to clearer code. Hacker types prefer shorter names, as
this requires less keystrokes, and leads to a more compact
representation of the code. It is expected that if you do use this
module, then its usage will be fairly ubiquitous within your code, and
the mnemonics will become familiar, much like the qw and s/ operators in
perl. As always with perl, the decision is yours.
Some methods take a single parameter or list of parameters; some have
large lists of parameters that can be passed in any order. If the
documentation states:
Args: [x str], [y int], [z ANY]
Then the method can be called like this:
$stag->foo("this is x", 55, $ref);
or like this:
$stag->foo(-z=>$ref, -x=>"this is x", -y=>55);
INITIALIZATION METHODS
new
Title: new
Args: element str, data STAG-DATA
Returns: Data::Stag node
Example: $node = stag_new();
Example: $node = Data::Stag->new;
Example: $node = Data::Stag->new(person => [[name=>$n], [phone=>$p]]);
creates a new instance of a Data::Stag node
stagify (nodify)
Title: stagify
Synonym: nodify
Args: data ARRAY-REF
Returns: Data::Stag node
Example: $node = stag_stagify([person => [[name=>$n], [phone=>$p]]]);
turns a perl array reference into a Data::Stag node.
similar to new
parse
Title: parse
Args: [file str], [format str], [handler obj], [fh FileHandle]
Returns: Data::Stag node
Example: $node = stag_parse($fn);
Example: $node = stag_parse(-fh=>$fh, -handler=>$h, -errhandler=>$eh);
Example: $node = Data::Stag->parse(-file=>$fn, -handler=>$myhandler);
slurps a file or string into a Data::Stag node structure. Will guess the
format (xml, sxpr, itext) from the suffix if it is not given.
The format can also be the name of a parsing module, or an actual parser
object;
The handler is any object that can take nested Stag events (start_event,
end_event, evbody) which are generated from the parse. If the handler is
omitted, all events will be cached and the resulting tree will be
returned.
See the Data::Stag::BaseHandler manpage for writing your own handlers
See the Data::Stag::BaseGenerator manpage for details on parser classes,
and error handling
parsestr
Title: parsestr
Args: [str str], [format str], [handler obj]
Returns: Data::Stag node
Example: $node = stag_parsestr('(a (b (c "1")))');
Example: $node = Data::Stag->parsestr(-str=>$str, -handler=>$myhandler);
Similar to parse(), except the first argument is a string
from
Title: from
Args: format str, source str
Returns: Data::Stag node
Example: $node = stag_from('xml', $fn);
Example: $node = stag_from('xmlstr', q[1]);
Example: $node = Data::Stag->from($parser, $fn);
Similar to parse
slurps a file or string into a Data::Stag node structure.
The format can also be the name of a parsing module, or an actual parser
object
unflatten
Title: unflatten
Args: data array
Returns: Data::Stag node
Example: $node = stag_unflatten(person=>[name=>$n, phone=>$p, address=>[street=>$s, city=>$c]]);
Creates a node structure from a semi-flattened representation, in which
children of a node are represented as a flat list of data rather than a
list of array references.
This means a structure can be specified as:
person=>[name=>$n,
phone=>$p,
address=>[street=>$s,
city=>$c]]
Instead of:
[person=>[ [name=>$n],
[phone=>$p],
[address=>[ [street=>$s],
[city=>$c] ] ]
]
]
The former gets converted into the latter for the internal
representation
makehandler
Title: makehandler
Args: hash of CODEREFs keyed by element name
OR a string containing the name of a module
Returns: L
Example: $h = Data::Stag->makehandler(%subs);
Example: $h = Data::Stag->makehandler("My::FooHandler");
This creates a Stag event handler. The argument is a hash of subroutines
keyed by element/node name. After each node is fired by the
parser/generator, the subroutine is called, passing the handler object
and the stag node as arguments. whatever the subroutine returns is
placed back into the tree
For example, for a a parser/generator that fires events with the
following tree form
foo
...
we can create a handler that writes person/name like this:
$h = Data::Stag->makehandler(
person => sub { my ($self,$stag) = @_;
print $stag->name;
return $stag; # dont change tree
});
$stag = Data::Stag->parse(-str=>"(...)", -handler=>$h)
See the Data::Stag::BaseHandler manpage for details on handlers
getformathandler
Title: getformathandler
Args: format str OR L
Returns: L
Example: $h = Data::Stag->getformathandler('xml');
$h->file("my.xml");
Data::Stag->parse(-fn=>$fn, -handler=>$h);
Creates a Stag event handler - this handler can be passed to an event
generator / parser. Built in handlers include:
xml Generates xml tags from events
sxpr
Generates S-Expressions from events
itext
Generates indented text from events
All the above are kinds of the Data::Stag::Writer manpage
chainhandler
Title: chainhandler
Args: blocked events - str or str[]
initial handler - handler object
final handler - handler object
Returns:
Example: $h = Data::Stag->chainhandler('foo', $processor, 'xml')
chains handlers together - for example, you may want to make transforms
on an event stream, and then pass the event stream to another handler -
for example, and xml handler
$processor = Data::Stag->makehandler(
a => sub { my ($self,$stag) = @_;
$stag->set_foo("bar");
return $stag
},
b => sub { my ($self,$stag) = @_;
$stag->set_blah("eek");
return $stag
},
);
$chainh = Data::Stag->chainhandler(['a', 'b'], $processor, 'xml');
$stag = Data::Stag->parse(-str=>"(...)", -handler=>$chainh)
chains together two handlers (see also the script stag-handle.pl)
RECURSIVE SEARCHING
find (f)
Title: find
Synonym: f
Args: element str
Returns: node[] or ANY
Example: @persons = stag_find($struct, 'person');
Example: @persons = $struct->find('person');
recursively searches tree for all elements of the given type, and
returns all nodes or data elements found.
if the element found is a non-terminal node, will return the node if the
element found is a terminal (leaf) node, will return the data value
the element argument can be a path
@names = $struct->find('department/person/name');
will find name in the nested structure below:
(department
(person
(name "foo")))
findnode (fn)
Title: findnode
Synonym: fn
Args: element str
Returns: node[]
Example: @persons = stag_findnode($struct, 'person');
Example: @persons = $struct->findnode('person');
recursively searches tree for all elements of the given type, and
returns all nodes found.
paths can also be used (see find)
findval (fv)
Title: findval
Synonym: fv
Args: element str
Returns: ANY[] or ANY
Example: @names = stag_findval($struct, 'name');
Example: @names = $struct->findval('name');
Example: $firstname = $struct->findval('name');
recursively searches tree for all elements of the given type, and
returns all data values found. the data values could be primitive
scalars or nodes.
paths can also be used (see find)
sfindval (sfv)
Title: sfindval
Synonym: sfv
Args: element str
Returns: ANY
Example: $name = stag_sfindval($struct, 'name');
Example: $name = $struct->sfindval('name');
as findval, but returns the first value found
paths can also be used (see find)
findvallist (fvl)
Title: findvallist
Synonym: fvl
Args: element str[]
Returns: ANY[]
Example: ($name, $phone) = stag_findvallist($personstruct, 'name', 'phone');
Example: ($name, $phone) = $personstruct->findvallist('name', 'phone');
recursively searches tree for all elements in the list
DEPRECATED
DATA ACCESSOR METHODS
these allow getting and setting of elements directly underneath the
current one
get (g)
Title: get
Synonym: g
Args: element str
Return: node[] or ANY
Example: $name = $person->get('name');
Example: @phone_nos = $person->get('phone_no');
gets the value of the named sub-element
if the sub-element is a non-terminal, will return a node(s) if the
sub-element is a terminal (leaf) it will return the data value(s)
the examples above would work on a data structure like this:
[person => [ [name => 'fred'],
[phone_no => '1-800-111-2222'],
[phone_no => '1-415-555-5555']]]
will return an array or single value depending on the context
[equivalent to findval(), except that only direct children (as opposed
to all descendents) are checked]
paths can also be used, like this:
@phones_nos = $struct->get('person/phone_no')
sget (sg)
Title: sget
Synonym: sg
Args: element str
Return: ANY
Example: $name = $person->sget('name');
Example: $phone = $person->sget('phone_no');
Example: $phone = $person->sget('department/person/name');
as get but always returns a single value
[equivalent to sfindval(), except that only direct children (as opposed
to all descendents) are checked]
getl (gl getlist)
Title: gl
Synonym: getl
Synonym: getlist
Args: element str[]
Return: node[] or ANY[]
Example: ($name, @phone) = $person->getl('name', 'phone_no');
returns the data values for a list of sub-elements of a node
[equivalent to findvallist(), except that only direct children (as
opposed to all descendents) are checked]
getn (gn getnode)
Title: getn
Synonym: gn
Synonym: getnode
Args: element str
Return: node[]
Example: $namestruct = $person->getn('name');
Example: @pstructs = $person->getn('phone_no');
as get but returns the whole node rather than just the data value
[equivalent to findnode(), except that only direct children (as opposed
to all descendents) are checked]
sgetmap (sgm)
Title: sgetmap
Synonym: sgm
Args: hash
Return: hash
Example: %h = $person->sgetmap('social-security-no'=>'id',
'name' =>'label',
'job' =>0,
'address' =>'location');
returns a hash of key/val pairs based on the values of the data values
of the subnodes in the current element; keys are mapped according to the
hash passed (a value of '' or 0 will map an identical key/val).
no multivalued data elements are allowed
set (s)
Title: set
Synonym: s
Args: element str, datavalue ANY (list)
Return: ANY
Example: $person->set('name', 'fred'); # single val
Example: $person->set('phone_no', $cellphone, $homephone);
sets the data value of an element for any node. if the element is
multivalued, all the old values will be replaced with the new ones
specified.
ordering will be preserved, unless the element specified does not exist,
in which case, the new tag/value pair will be placed at the end.
for example, if we have a stag node $person
person:
name: shuggy
job: bus driver
if we do this
$person->set('name', ());
we will end up with
person:
job: bus driver
then if we do this
$person->set('name', 'shuggy');
the 'name' node will be placed as the last attribute
person:
job: bus driver
name: shuggy
You can also use magic methods, for example
$person->set_name('shuggy');
$person->set_job('bus driver', 'poet');
print $person->itext;
will print
person:
name: shuggy
job: bus driver
job: poet
note that if the datavalue is a non-terminal node as opposed to a
primitive value, then you have to do it like this:
$people = Data::Stag->new(people=>[
[person=>[[name=>'Sherlock Holmes']]],
[person=>[[name=>'Moriarty']]],
]);
$address = Data::Stag->new(address=>[
[address_line=>"221B Baker Street"],
[city=>"London"],
[country=>"Great Britain"]]);
($person) = $people->qmatch('person', (name => "Sherlock Holmes"));
$person->set("address", $address->data);
unset (u)
Title: unset
Synonym: u
Args: element str, datavalue ANY
Return: ANY
Example: $person->unset('name');
Example: $person->unset('phone_no');
prunes all nodes of the specified element from the current node
You can use magic methods, like this
$person->unset_name;
$person->unset_phone_no;
free
Title: free
Synonym: u
Args:
Return:
Example: $person->free;
removes all data from a node. If that node is a subnode of another node,
it is removed altogether
for instance, if we had the data below:
fred
..
and called
$person->get_address->free
then the person node would look like this:
fred
add (a)
Title: add
Synonym: a
Args: element str, datavalues ANY[]
OR
Data::Stag
Return: ANY
Example: $person->add('phone_no', $cellphone, $homephone);
Example: $person->add_phone_no('1-555-555-5555');
Example: $dataset->add($person)
adds a datavalue or list of datavalues. appends if already existing,
creates new element value pairs if not already existing.
if the argument is a stag node, it will add this node under the current
one
element (e name)
Title: element
Synonym: e
Synonym: name
Args:
Return: element str
Example: $element = $struct->element
returns the element name of the current node.
This is illustrated in the different representation formats below
sxpr
(element "data")
or
(element
(sub_element "..."))
xml
data
or
...
perl
[element => $data ]
or
[element => [
[sub_element => "..." ]]]
itext
element: data
or
element:
sub_element: ...
kids (k children)
Title: kids
Synonym: k
Synonym: children
Args:
Return: ANY or ANY[]
Example: @nodes = $person->kids
Example: $name = $namestruct->kids
returns the data value(s) of the current node; if it is a terminal node,
returns a single value which is the data. if it is non-terminal, returns
an array of nodes
addkid (ak addchild)
Title: addkid
Synonym: ak
Synonym: addchild
Args: kid node
Return: ANY
Example: $person->addkid('job', $job);
adds a new child node to a non-terminal node, after all the existing
child nodes
subnodes
Title: subnodes
Args:
Return: ANY[]
Example: @nodes = $person->subnodes
returns the non-terminal data value(s) of the current node;
QUERYING AND ADVANCED DATA MANIPULATION
ijoin (j)
Title: ijoin
Synonym: j
Synonym: ij
Args: element str, key str, data Node
Return: undef
does a relational style inner join - see previous example in this doc
key can either be a single node name that must be shared (analagous to
SQL INNER JOIN .. USING), or a key1=key2 equivalence relation (analagous
to SQL INNER JOIN ... ON)
qmatch (qm)
Title: qmatch
Synonym: qm
Args: return-element str, match-element str, match-value str
Return: node[]
Example: @persons = $s->qmatch('person', 'name', 'fred');
Example: @persons = $s->qmatch('person', (job=>'bus driver'));
queries the node tree for all elements that satisfy the specified
key=val match - see previous example in this doc
for those inclined to thinking relationally, this can be thought of as a
query that returns a stag object:
SELECT FROM WHERE =
this always returns an array; this means that calling in a scalar
context will return the number of elements; for example
$n = $s->qmatch('person', (name=>'fred'));
the value of $n will be equal to the number of persons called fred
tmatch (tm)
Title: tmatch
Synonym: tm
Args: element str, value str
Return: bool
Example: @persons = grep {$_->tmatch('name', 'fred')} @persons
returns true if the the value of the specified element matches - see
previous example in this doc
tmatchhash (tmh)
Title: tmatchhash
Synonym: tmh
Args: match hashref
Return: bool
Example: @persons = grep {$_->tmatchhash({name=>'fred', hair_colour=>'green'})} @persons
returns true if the node matches a set of constraints, specified as
hash.
tmatchnode (tmn)
Title: tmatchnode
Synonym: tmn
Args: match node
Return: bool
Example: @persons = grep {$_->tmatchnode([person=>[[name=>'fred'], [hair_colour=>'green']]])} @persons
returns true if the node matches a set of constraints, specified as node
cmatch (cm)
Title: cmatch
Synonym: cm
Args: element str, value str
Return: bool
Example: $n_freds = $personset->cmatch('name', 'fred');
counts the number of matches
where (w)
Title: where
Synonym: w
Args: element str, test CODE
Return: Node[]
Example: @rich_persons = $data->where('person', sub {shift->get_salary > 100000});
the tree is queried for all elements of the specified type that satisfy
the coderef (must return a boolean)
my @rich_dog_or_cat_owners =
$data->where('person',
sub {my $p = shift;
$p->get_salary > 100000 &&
$p->where('pet',
sub {shift->get_type =~ /(dog|cat)/})});
iterate (i)
Title: iterate
Synonym: i
Args: CODE
Return: Node[]
Example: $data->iterate(sub {
my $stag = shift;
my $parent = shift;
if ($stag->element eq 'pet') {
$parent->set_pet_name($stag->get_name);
}
});
iterates through whole tree calling the specified subroutine.
the first arg passed to the subroutine is the stag node representing the
tree at that point; the second arg is for the parent.
for instance, the example code above would turn this
(person
(name "jim")
(pet
(name "fluffy")))
into this
(person
(name "jim")
(pet_name "fluffy")
(pet
(name "fluffy")))
MISCELLANEOUS METHODS
duplicate (d)
Title: duplicate
Synonym: d
Args:
Return: Node
Example: $node2 = $node->duplicate;
does a deep copy of a stag structure
isanode
Title: isanode
Args:
Return: bool
Example: if (stag_isanode($node)) { ... }
hash
Title: hash
Args:
Return: hash
Example: $h = $node->hash;
turns a tree into a hash. all data values will be arrayrefs
pairs
Title: pairs
turns a tree into a hash. all data values will be scalar (IMPORTANT:
this means duplicate values will be lost)
write
Title: write
Args: filename str, format str[optional]
Return:
Example: $node->write("myfile.xml");
Example: $node->write("myfile", "itext");
will try and guess the format from the extension if not specified
xml
Title: xml
Args: filename str, format str[optional]
Return:
Example: $node->write("myfile.xml");
Example: $node->write("myfile", "itext");
Args:
Return: xml str
Example: print $node->xml;
XML METHODS
sax
Title: sax
Args: saxhandler SAX-CLASS
Return:
Example: $node->sax($mysaxhandler);
turns a tree into a series of SAX events
xpath (xp tree2xpath)
Title: xpath
Synonym: xp
Synonym: tree2xpath
Args:
Return: xpath object
Example: $xp = $node->xpath; $q = $xp->find($xpathquerystr);
xpquery (xpq xpathquery)
Title: xpquery
Synonym: xpq
Synonym: xpathquery
Args: xpathquery str
Return: Node[]
Example: @nodes = $node->xqp($xpathquerystr);
STAG SCRIPTS
The following scripts come with the stag module
stag-autoschema.pl
writes the implicit stag-schema for a stag file
stag-db.pl
persistent storage and retrieval for stag data (xml, sxpr, itext)
stag-diff.pl
finds the difference between two stag files
stag-drawtree.pl
draws a stag file (xml, itext, sxpr) as a PNG diagram
stag-filter.pl
filters a stag file (xml, itext, sxpr) for nodes of interest
stag-findsubtree.pl
finds nodes in a stag file
stag-flatten.pl
turns stag data into a flat table
stag-grep.pl
filters a stag file (xml, itext, sxpr) for nodes of interest
stag-handle.pl
streams a stag file through a handler into a writer
stag-join.pl
joins two stag files together based around common key
stag-mogrify.pl
mangle stag files
stag-parse.pl
parses a file and fires events (e.g. sxpr to xml)
stag-query.pl
aggregare queries
stag-split.pl
splits a stag file (xml, itext, sxpr) into multiple files
stag-splitter.pl
splits a stag file into multiple files
stag-view.pl
draws an expandable Tk tree diagram showing stag data
To get more documentation, type
stag_