
Using Dv::Ticket::Cgi to write cgi applications

Dirk Vermeir

July 26, 2003

Contents

1 Basic cgi facilities 1

2 User authentication using tickets 2

3 A simple example 3

4 The Dv::Ticket::Cgi authentication protocol in more detail 5

Abstract

A quick example-based guide on how to use the Dv::Ticket::Cgi class to write cgi applications. See also the doxygen docu-
mentation for the dvticket and dvcgi packages.

This text is also available in postscript (example.ps) and pdf (example.pdf) format.

1 Basic cgi facilities

The dvcgi package provides a class Dv::Cgi::Cgi that gives the application access to:

� The environment variables as defined by the cgi protocol, e.g. the REMOTE_ADDR variable. Access is through a Dv::Util::Props
object (see the dvutil documentation). E.g. the following code accesses the dot address of the browser accessing your pro-
gram.

Dv::Cgi::Cgi cgi(..);

std::string browser_address = cgi.env()["REMOTE_ADDR"];

� The form data as provided, e.g. by a form or a complex url.

Dv::Cgi::Cgi cgi(..);

if (cgi.props().find("age")) { // form data variable age is available
int age(cgi.props()["age"]); // automatic conversion from string
..
}

� Cookies, again through a Dv::Util::Props object.

1

http://tinf2.vub.ac.be/~dvermeir/software/dv/dvticket/html/index.html
http://tinf2.vub.ac.be/~dvermeir/software/dv/dvcgi/html/index.html
file:example.ps
http://tinf2.vub.ac.be/~dvermeir/software/dv/dvutil/html/index.html

Dv::Cgi::Cgi cgi(..);

if (cgi.cookies().find("ticket")) { // cookie "ticket" is available
int ticket_id(cgi.cookies()["ticket"]);
..
}

In addition, one can set headers of the HTTP(S) reply using the Dv::Cgi::HttpHeader object that can be obtained by cgi.header().
The following code sets a cookie and then redirects the browser to a different url.

Dv::Cgi::Cgi cgi(..);
std::string url;
// set cookie with name "ticket" and value "123"
cgi.header().cookie("ticket",Dv::Util::tostring(123));
cgi.header().location(url);

Since Dv::Cgi::Cgi is derived from std::ostream, one can write to it using operator«. The following program prints "hello
world" to the browser, followed by a listing of environment, form data and cookie variables.

Dv::Cgi::Cgi cgi(..);

cgi.header().content_type("text/plain");
cgi << "hello world" << std::endl

<< "env: " << std::endl << cgi.env() << std::endl
<< "form data: " << std::endl << cgi.props() << std::endl
<< "cookies: " << std::endl << cgi.cookies() << std::endl;

Warning
All header settings must be performed before writing output to the cgi object.

There are other facilities that are not discussed here, see the documentation for the dvcgi package.

2 User authentication using tickets

The class Dv::Ticket::Cgi (from the dvticket package) is derived from Dv::Cgi::Cgi. It adds automatic authentication using
tickets.

A ticket is identified by a unique unsigned long which is associated to a user and a (browser) host for a limited period. The
browser keeps the id of a ticket as a cookie, thus making it possible for a cgi program to obtain the ticket id from the browser and
then get the ticket details (the user) from a ticket server.

One of the parameters of the constructor of Dv::Ticket::Cgi is the url of a so-called "login server". The constructor will
operate as shown in the following simplified pseudo-code:

if (there is a "ticket" cookie) {
obtain the ticket id from the cookie
validate the ticket, using the id, with the ticket server
}

else
redirect to the login server url (a parameter of the constructor)

2

http://tinf2.vub.ac.be/~dvermeir/software/dv/dvcgi/html/index.html

The login server will show a form where the user can fill in his name and password. These will be verified by the login server
and, if ok, a new ticket will obtained from a ticket server. The login server will arrange for the id to be associated with a "ticket"
cookie in the browser. A more detailed description can be found in another section .

The net result is that, when the constructor for the Dv::Ticket::Cgi object finishes, a valid ticket is available, as illustrated by
the simple program below.

#include <dvticket/cgi.h>

int
main(int argc,char* argv[]) {
Dv::Ticket::Cgi cgi("test.cgi", "tinf2.vub.ac.be/~dvermeir/login.cgi", "en", true);
cgi.header().content_type("text/plain");

try {
cgi << "You are " << cgi.user().name()

<< ", your category is " << cgi.user().category()
<< " and your id is " << cgi.user().id() << std::endl;

}
catch (std::exception& e) {
cgi << e.what() << std::endl;
return 1;
}

return 0;
}

3 A simple example

The example cgi program shows a form asking the user to fill in his age and nickname. It then echoes back the incremented age
and other data.

The program uses an auxiliary function which substitutes references of the form %{name} in a file by the value associated with
name in a Dv::Util::Props object.

// Output file fn on cgi, replacing %{name} in the file by out["name"]
bool
show_file(Dv::Cgi::Cgi& cgi, const Dv::Util::Props& out,
const std::string& fn) {
std::ifstream ifs(fn.c_str()); // open html template file
if (ifs) {
std::ostringstream oss;
out.substitute(ifs, oss); // replace e.g. %{age} by out["age"]
cgi << oss.str() << std::endl;
}

else {
cgi->content_type("text/plain");
cgi << fn << ": could not open\n\n" << out << std::endl;
}

}

The main program refers to the login server at tinf2.vub.ac.be/ dvermeir/login.cgi to obtain a ticket, if one is not
available through a cookie.

3

#include <dvticket/cgi.h>

// definition of show_file omitted

int
main(int argc,char* argv[]) {
Dv::Ticket::Cgi cgi("test.cgi", "tinf2.vub.ac.be/~dvermeir/login.cgi", "en", true);
try {

Dv::Util::Props out; // used to substitute in html files
out.add("username", cgi.user().name());
out.add("category", cgi.user().category());
out.add("info", cgi.user().info());
out.add("uid", Dv::Util::tostring(cgi.user().id()));
out.add("here", cgi.here()); // the url of this program

// if there is no form data variable "age", this must
// be the first time we are activated
if (! cgi.props().find("age"))

show_file(cgi, out, "test-cgi-a.html");
else { // form has been filled

try { // conversion to int age may throw exception
int age = cgi.props()["age"];
out["age"] = ++age; // increment
out.add("nickname", cgi.props()["nickname"]);
show_file(cgi, out, "test-cgi-b.html");
}

catch (std::exception& e) { // wrong input from user, show form again
cgi->location(cgi.here());
cgi << std::endl;
}

}
}

catch (std::exception& e) {
cgi->content_type("text/plain");
cgi << e.what() << std::endl;
return 1;
}

return 0;
}

The second html template file is shown below.

<html>
<head>
<title>TEST-CGI CLIENT</title>
<style type="text/css">

a:link { text-decoration:none }
a:active { text-decoration:none }
a:visited { text-decoration:none }

</style>
</head>
<body bgcolor="#ffffff">
<h1>TEST-CGI CLIENT</h1>
<p>Welcome, %{category} %{username}.</p>
<p>Your id is %{uid}.</p>

4

<p>Associated info with your ticket is %{info}.</p>
<p>Your age is %{age} and your nickname is %{nickname}.</p>
<p>refresh</p>
</body>
</html>

A skeleton Makefile used to compile and link the example is shown below (of course, using autotools is much simpler).

CPPFLAGS=-I /usr/local/include
LDFLAGS=-Wl,-rpath -Wl,/usr/lib/:/usr/local/lib/
LIBS= -L/usr/local/lib \
-ldvticket -ldvmysql -ldvssl -ldvcgi -ldvnet -ldvxml -ldvutil \
-lxmlwrapp -lxml2 -lxsltwrapp -lexslt -lxslt -lssl -lcrypto \
-L/usr/lib/mysql -lmysqlclient
test.cgi: test-cgi.o
g++ -o $@ $(LDFLAGS) $(LIBS) $<

A tarball with the source for a similar example is available in the file testcgi.tar.

4 The Dv::Ticket::Cgi authentication protocol in more detail

We describe what happens when the constructor of the Dv::Ticket::Cgi object does not find a "ticket" cookie.

We use browser, login and client to denote the host where the respective programs (browser, login server and the host where
the Dv::Ticket::Cgi object is constructed) run (note that the login host also runs the ticket server).

1. browser contacts client without or with invalid or expired "ticket" cookie.

2. client redirects to login url.

3. browser contacts login url.

4. login program shows page to fill user name, password.

5. browser sends username, password to login program

6. login program obtains new ticket

7. login program redirects to client?ticket=id (note the "ticket" variable in the form data)

8. browser contacts client, with ticket variable in the form data.

9. client notices "ticket" variable in the form data, sets a "ticket" cookie with the same value and succeeds the Dv::Ticket::Cgi
constructor.

The end result, upon a succesful login, will be that the browser has a cookie identifying a ticket for the client host. In such a
case, the client simply validates the ticket id with the ticket server, thus obtaining e.g. information on the user.

5

file:testcgi.tar

	 Basic cgi facilities
	 User authentication using tickets
	 A simple example
	 The Dv::Ticket::Cgi authentication protocol in more detail

