
Active-DVI

Reference manual
Version 1.4

Didier Rémy and Pierre Weis

January 24, 2003

Active-DVI is a viewer for DVI files that also recognizes a new class of \special’s
targeted to presentations via laptop computers: various special effects can easily be
incorporated to the presentation, via a companion advi LATEX package.

Active-DVI is copyright c© 2001, 2002 INRIA and distributed under the Gnu Li-
brary General Public License —see the LGPL file included in the distribution.

Acknowledgements and contributors

Active-DVI is based on Mldvi which constitutes its core rendering engine. Alexandre Miquel
wrote Mldvi and distributes it under the LGPL license at URL http://pauillac.inria.

fr/~miquel/.
Active-DVI has been developed by Jun Furuse, Didier Rémy and Pierre Weis with also

contributions by Roberto Di Cosmo, Didier Le Botlan, Xavier Leroy, and Alan Schmitt.

1

http://pauillac.inria.fr/~miquel/
http://pauillac.inria.fr/~miquel/

Contents

1 Installation 3

2 Active-DVI for the impatient 3

3 Safety concerns when using the Active-DVI previewer 3

4 Initialisation files for Active-DVI 4
4.1 Syntax of initialisation files . 4
4.2 Loading initialisation files . 4
4.3 Automatic setting of options . 5

5 Using the Active-DVI previewer 5
5.1 Command line options . 5
5.2 Cut and paste . 6
5.3 Hyperref . 7
5.4 Floating table of contents and thumbnails 7
5.5 Moving around . 8
5.6 Using and making special effects . 8

6 The advi.sty LATEX package 8
6.1 Printing the presentation . 8
6.2 Pause, Record and Play . 9
6.3 Images . 9
6.4 Colors . 10
6.5 Background . 11
6.6 Transitions . 12
6.7 Embedded applications . 13

6.7.1 Launching embedded applications . 13
6.7.2 Monitoring embedded applications 14

6.8 Active anchors . 15
6.9 Postscript specials . 16

6.9.1 Overlays . 16
6.9.2 PStricks . 16

7 Auxilliary LATEX packages 17
7.1 The superpose package . 17
7.2 The bubble package . 17
7.3 The annotations package . 18
7.4 The advi-graphicx package . 18

A Limitations 18

B Reporting bugs 19

2

C Key bindings 19

D Index 20

3

1 Installation

2 Active-DVI for the impatient

• As a previewer, Active-DVI can preview any correct DVI file.

• As a presenter, Active-DVI provides some LATEX packages to facilitate animations and
interaction with the presenter from within your LATEX source text. The advi-slides.sty
package is designed to be a simple way to build a presentation for Active-DVI.

Here is a simplistic talk example, to begin with. As a first simple interaction with the
presenter, write \pause into your LATEX code when you want the presenter to stop when it
is displaying a slide.

\documentclass[landscape]{slides}

% The mandatory definition of the \footer macro

% Footer is empty, if you write \def\footer{}

\def\footer{{\hfill \em {Me.Myself@institut.fr\hfill 24-01-2003}}}

\usepackage{advi-slides}

\begin{document}

\firstslide{My talk}

\vspace*{5cm}\centerline{{\large \bf \em Me Myself}}

\newslide{Plan}

This talk is divided into n parts: Part 1, Part 2, and Partn.

\newslide{Part 1}

This is my first talk using {\ActiveDVI}!

\newslide{Part 2}

Bla bla.

\newslide{Part n}

Blz blz.

\newslide{Conclusion}

This was my first talk.

\end{document}

More involved examples (including Makefiles to compile the whole thing) can be found
in the directory examples of the distribution. (In particular, this example is given in
examples/slitex/simplistic.)

3 Safety concerns when using the Active-DVI previewer

Warning! Active-DVI may execute programs and commands embedded into the DVI file.
Hence, when playing a DVI file from an untrusted source, you should run advi with the

4

-safer option that inhibits the execution of embedded applications. This warning ap-
plies in particular if you choose Active-DVI as your default meta-mail previewer for the
application/x-dvi mime-type.

The default safety option is the -ask option: it tells Active-DVI to ask the user each
time it must launch an application. (Note that in such a case Active-DVI asks only once to
launch a given application: it remembers your previous decisions concerning the command
and acts accordingly for the rest of the presentation.)

The second safety option is the above mentioned -safer option: it completely inhibits
the execution of embedded applications.

The last safety option is -exec: if you call advi -exec, advi automatically and silently
launches all embedded applications (this is useful to play your own presentations without
the burden of answering yes to Active-DVI’s questions).

As mentioned, the safe -ask option is the default, automatically set when nothing has
been explicitly specified by the user. If desired, the default safety option can be set via
initialisation files, either on a system large scale by the machine administrator (in the file
/etc/advirc), on a local scale by individual users (setting the default policy for that user),
or even on a per directory basis (setting the default policy to show DVI files in this directory)!
(This last option is convenient to gracefully run your own talks, while still being cautious
when running talks from others.)

4 Initialisation files for Active-DVI

4.1 Syntax of initialisation files

An initialisation file for Active-DVI is simply a text file that contains options exactly similar
to those you can give on the command line (with the exception of comments, made of a
sharp sign (#) followed by some text that is ignored until the end of line). For instance:

-exec # I know what I mean!

-bgcolor grey16

-fgcolor grey95

is a valid initialisation file that sets the safety policy to -exec, then sets the background and
foreground colors to obtain a nice reverse video effect.

4.2 Loading initialisation files

Before parsing options on the command line, Active-DVI loads, in the order listed below,
the following initialisation files (nothing happens if any of them does not exist):

• system wide initialisation file: /etc/advirc,

• user specific initialisation files: ~/.advirc then ~/.advi/advirc,

• directory specific initialisation file: ./.advirc.

5

4.3 Automatic setting of options

In addition, the user may load an arbitrary file containing options by specifying the file
path via the command line argument -options-file. Hence, -options-file filename

loads filename when parsing this option to set up the options contained in filename (thus
overriding the options set before by the default /.advirc or /.advi/advirc init files).

5 Using the Active-DVI previewer

5.1 Command line options

Active-DVI is invoked with the following command syntax

advi [options] dvifile

The advi commands recognized the following options:

Help and info options

-v Prints the advi current version and exits
--version Prints the full advi current version and exits
-help Short command line options help

Window and display specifications

-geometry geom Geometry of Active-DVI’s window specification
Geometry geom is specified in pixels, using the standard format for XWindow geometry

specifications (i.e: WIDTHxHEIGHT[+XOFFSET+YOFFSET]).

-fullwidth Adjust the size of the window to the width of the screen

-nomargins Cancel horizontal and vertical margins
-hmargin dimen Horizontal margin specification (default: 1cm)
-vmargin dimen Vertical margin specification (default: 1cm)

Dimensions are specified as numbers optionally followed by two letters representing units.
When no units are given, dimensions are treated as numbers of pixels. Currently supported
units are the standard TeX units as specified in the TeXbook (D. Knuth, Addison-Wesley,
(C) 1986): ‘pt’ (point), ‘pc’ (pica), ‘in’ (inch), ‘bp’ (big point), ‘cm’ (centimeter), ‘mm’
(millimeter), ‘dd’ (didot point), ‘cc’ (cicero) and ‘sp’ (scaled point). Note that dimensions
are specified w.r.t the original TeX document, and do not correspond to what is actually
shown on the screen, which can be displayed at a different resolution than specified in the
original TeX source.

-crop Crop the window to the best size (default)
-nocrop Disable cropping

6

Color specifications

-fgcolor <color> Specify the color of the foreground color
-bgcolor <color> Specify the color of the background color
-rv Specify that reverse video should be simulated by exchanging the backgound and foreground colors

Helpers specification

-pager Specify the name of the pager to launch on a txt link
-browser Specify the name of the browser to a html link

Debugging options

--debug General debug option
--debug_pages Debug page motion
--show_ps Print a copy of Postscript sent to gs to stdout
--verbose_image_access Change the cursor while loading images

Rendering options

-A Toggle Postscript antialiasing
-passive Inhibit effects that are visible when redrawing the page

(Transitions, delays, embedded applications)

Safety options

-exec Set safety policy to “automatic execution”
-ask Set safety policy to “ask user before execution”
-safer Set safety policy to “no execution of embedded aplications”

Option files option

-option-file <filename> Load filename as a file containing a list of options
as given on the command line to advi.

5.2 Cut and paste

Text can be copied from the Active-DVI previewer to an another application. However, this
uses the XBuffer and not the XSelection mechanism.

• Shift middle-click copies the current word.

• Shift right-click and drag copies the specified region.

Moreover, Shift left-click dump an ASCII representation of click in the source file. This
expects the DVI to be instrumented with line numbers of the form

7

line: 〈line〉 〈file〉
where 〈line〉 and 〈file〉 are the current source line and current source file.

The position is exported in ASCII in the form

#line 〈before〉, 〈after〉 <<〈prefix〉>><<〈suffix〉>> 〈file〉
where 〈before〉 and 〈after〉 are the enclosing line numbers, 〈prefix〉〈suffix〉 are the word con-
stituent surrounding the position, and file is the current file.

Line numbers default to 0 when not found. Note that line numbers may be inconsistent
if they \special-line commands have not been inserted close enough to the position.

5.3 Hyperref

Active-DVI supports the LATEX hyperref package with both internal and cross-file references.
For cross-file references, it launches a new advi process to view the target.

Active-DVI improves the treatment of hyperrefs over convential previewers, by empha-
sizing the hypertarget text of an hyperlink. Thus, an hypertarget definition

\hypertarget{〈tag〉}{〈text〉}
should make the activation of the link 〈tag〉 not only move to the page where 〈text〉 occurs,

but also emphasize the target 〈text〉. However, since \hypertarget does include its second
argument withing the target, we use the following command instead:

\newcommand{\softtarget}[2]%

{\special{html:}#2\special{html:}}

(If you are viewing this document with Active-DVI, you may move over or click on this
area to see the effect.)

5.4 Floating table of contents and thumbnails

There are two ways to include a floating table of contents while previewing.

• Active-DVI recognizes the reserved hypertargets /toc.first and /toc.last as mark-
ers for the first and last pages of the table of contents. These pages then become
floating, i.e. accessible from anywhere in the document with the default keybinding t.
The first stroke on t shows the first page of the table of contents. Successive stokes will
show the following pages. (As usual, prefix integer argument may be used to directly
access a specific page of the table of contents.)

The package advi below redefines the macro \tableofcontents so that it automat-
ically inserts the reserved hypertargets markers around the table of contents. It also
provides two new macros, \advitoc and \endadvitoc, that serve to insert these mark-
ers when the table of contents is hand-made.

8

• If no table of contents markers are found, then Active-DVI will compute thumbnails,
i.e. will show the whole set of pages of the presentation, each page drawn at a smaller
scale and packed with the others on a single page. Active-DVI computes the scale so
that all the thumbnails fit on one page only, provided that the scale is less or equal to a
maximal value; otherwise, the maximal value scale is selected and the thumbnail pages
spread on several pages. The default maximal scale value is 5, so that 25 thumbnails can
fit on the same page. This value can be changed using the option -thumbnail scale.

Normally, thumbnails are drawn for all the pages. However, thumbnail pages can also
be defined manually, with an hypertarget whose anchor is of the form /page.〈suffix〉.
In this case, all the desired thumbnails must be explicitly marked.

By default, the binding T processes thumbnails and the binding t displays thumbnails if
already processed, or shows the table of contents if available. Otherwise pressing t has no
action. Thumbnails computation is explicit, so that incidentally hitting the t key does not
lead to an unexpected computation, hence an unexpected delay.

5.5 Moving around

See the key bindings in the appendix.

5.6 Using and making special effects

Presentation examples can be found in the examples directory. Don’t miss to play them!
Then, feel free to read their source code and copy the effects they provide.

Active-DVI can be used as is, but will shine when driven by a user with a bias toward
programming: special effects can easily be realized by using the LATEX packages provided
with the distribution.

Creative advanced users may program the presenter at various levels, either using or
defining simple LATEX macros, writing new LATEX package files, or by implementing extensions
to the previewer itself.

6 The advi.sty LATEX package

Active-DVI provides some LATEX packages to facilitate animations and interaction with the
presenter from within your LATEX source text.

The advi.sty package is the main package to include when writing a presentation for
Active-DVI. It defines the main set of interactive commands for Active-DVI to animate the
show. However, there is no need to load the package if no Active-DVI special effects are
required for the presentation.

6.1 Printing the presentation

The advi package recognizes the special option ignore, which is devoted to help the produc-
tion of a printable version of the presentation: the ignore option makes the package not to

9

produce advi specials, so that the show can be previewed by other previewers or turned into
Postscript with dvips. Of course, this option disables most effects that cannot be printed,
although some of them are still approximated.

If the ignore option is not set globally, it can be set locally with the commands \adviignore.
However, this will not prevent all effects, since some decisions are taken when the package
is loaded.

The package also defines the conditional \ifadvi which evaluates its first argument if
advi is not in ignore mode and its second argument otherwise.

6.2 Pause, Record and Play

\adviwait[〈seconds〉]
Wait for 〈seconds〉. If no argument is provided, waits until the user requests to
continue (hitting a key to move to next pause or to change page).

\advirecord[play]{〈tag〉}{〈latex code〉}
\begin{advirecording}[play]{〈tag〉}{〈latex code〉}〈text〉\end{advirecording}

Processes 〈latex code〉 and records the corresponding DVI output, bound to the
tag 〈tag〉. When recording, the DVI output is not displayed unless the option
play is set.

Records can be nested. If so, the inner record is always recorded with its own
tag; if the inner record is played when recording, it is also recorded as part of the
outer tag.

If the environment form is used, the 〈latex code〉 may contain fragile commands.

\adviplay[〈color〉]{〈tag〉}
Replay the DVI previously recorded and bound to 〈tag〉. The optional argument
changes the color to 〈color〉 during replay.

\advianchor[〈activation〉]{〈tag〉}{〈text〉}
\begin{advianchoring}[〈activation〉]{〈tag〉}〈text〉\end{advianchoring}

Plays the record bound to 〈tag〉 when the anchor is activated.

The argument 〈activation〉 may either be over or click. The page is reset to its
original appearance when the anchor is no more activated (the mouse leaves the
anchor area or the button is released).

If the environment form is used, 〈text〉 may contain fragile commands.

6.3 Images

Images can be encapsulated into the presentation using the Caml library CamlImages pro-
vided with the distribution of Active-DVI (see section 7.4).

10

6.4 Colors

The color package

In Active-DVI, colors can be specified with the conventions of the LATEX package color.sty,
that is, it should either be a previously defined color or a specification of the form [〈model〉]
{〈model color specification〉}.

Named colors

Colors can be named using the keyword 〈named〉. If you use named colors, the color names
are case sensitive and should generally be capitalized; for instance: \color[named]{White}
specifies the white color. Hence, \color[named]{Red}{some text} writes some text in red.

The names of available colors can be found in the dvipsnam.def file, generally at location
/usr/share/texmf/tex/latex/graphics/dvipsnam.def.

To give an idea, the names and colors available on a standard installation of LATEX are:
GreenYellow Yellow Goldenrod Dandelion Apricot
Peach Melon YellowOrange Orange BurntOrange
Bittersweet RedOrange Mahogany Maroon BrickRed
Red OrangeRed RubineRed WildStrawberry Salmon
CarnationPink Magenta VioletRed Rhodamine Mulberry
RedViolet Fuchsia Lavender Thistle Orchid DarkOrchid
Purple Plum Violet RoyalPurple BlueViolet
Periwinkle CadetBlue CornflowerBlue MidnightBlue
NavyBlue RoyalBlue Blue Cerulean Cyan ProcessBlue
SkyBlue Turquoise TealBlue Aquamarine BlueGreen
Emerald JungleGreen SeaGreen Green ForestGreen
PineGreen LimeGreen YellowGreen SpringGreen
OliveGreen RawSienna Sepia Brown Tan
Gray Black White

The CMYK specifications of colors

You may also explicitely use a CMYK (Cyan, Magenta, Yellow, Black) specification. In this
case the cyan, magenta, yellow and black values follow the 〈cmyk〉 keyword, and are given
as a list of four integers in the range 0 .. 255. For instance, \color[cmyk]{0,1,0,0} is a
valid specification for magenta.

The RGB specifications of colors

RGB (Red, Green, Blue) specifications are similar to the CMYK specifications: following
the 〈rbg〉 keyword, the red, green, or blue color values, are given as floating point numbers
in the range 0.0 .. 1.0. Hence, \color[rgb]{1.0,0.0,0.0} is a valid specification for red.

11

X colors

Active-DVI provides the package xcolor, an extension to the color package, that defines a
large set of X colors names, as found in the file rgb.txt of a typical X installation (this file
is generally located on /usr/X11R6/lib/X11/rgb.txt). To know which colors are available
look at the source file of package xcolor.sty in the directory tex of the distribution.

6.5 Background

Background of pages can be set in the LATEX source of the page, either as a plain color or as
an image (or both!). You can specify a global option to the background setting, so that this
background will be used for the remaining pages of the presentation (otherwise the presenter
resets background options at each new page).

Background images can be lighten by specifying an alpha value (a floating point number
between 0 and 1) that mesures the mixing between the color of the background and the
image.

Background images can also be blended, meaning that you can choose the algorithm that
surimposes the image to the background.

\advibg[global]{〈decl〉}
where 〈decl〉 is a list of settings of the following from:

color=〈color〉 (default value is none)

Set the background color to 〈color〉. If 〈color〉 is none this unsets the
background color. Otherwise, 〈color〉 must follow the convention of the
package color, that is, it should either be a previously defined color
or of the form [〈model〉]{〈model color specification〉}.
For example, the following specifications are all correct:

color=blue

color=[named]{Yellow}
color=[rgb]{0.7,0.3,0.8}

image=〈file〉 (default value is none)

Use the image found in 〈file〉 as background (none means unset).

fit=〈fit style〉 (default value is auto)

Fit the background image according to 〈style〉, which may be one of
the following keywords:

auto or
topleft top topright

left center right

bottomleft bottom bottomright

12

The auto fit style means scaling the image as desired in both directions
so that it fits the entire page. Other styles only force the same scaling
factor in both directions:

• Corner-styles means set the image in the corresponding corner and
scale it to cover the entire page.

• center means set the image in the center of the page and scale it
to cover the entire page.

• Segment-styles means adjust the image and the page on the seg-
ment (in which case, the image may not completely cover the page
on the opposite side).

alpha=〈float〉 (default value is none)

Set the alpha channel factor for the background image to 〈float〉 (none
means unset). An alpha factor of 0 means that the image is not visible
at all; conversely, an alpha factor of 1 means that the image covers the
background.

blend=〈blend mode〉 (default value is none)

Set the blend mode to 〈blend mode〉, which are reminiscent of Ghostscript
blending options. The blend mode should be one of the following:
normal, multiply, screen, overlay, dodge, burn, darken, lighten,
difference, exclusion, (none means unset).

none

Unset all background parameters. This key must appear on its own,
no arguments or keys are allowed.

The optional parameter global indicates that the definition is global and will
affect the following pages, as well as the current page.

By default, the background settings only affect the current page.

6.6 Transitions

\advitransition[global]{〈decl〉}
where 〈decl〉 is a list of settings of the following from:

none or slide or block or wipe

Set the transition mode to the corresponding key. One of this key is
mandatory (if several are provided the last one is selected).

from=〈direction〉

13

Make the transition come from 〈direction〉. Directions should be one
of the following:

topleft top topright

left center right

bottomleft bottom bottomright

The default direction, to be used when no local or global direction has been
specified, is determined dynamically: right when coming from previous page,
left when coming from next page, and top otherwise.

steps=〈n〉
Make the transition in 〈n〉 steps.

As for \advibg, the optional parameter global indicates that the definition is
global and will affect the following pages, as well as the current page.

By default, the transition definitions only affect the current page.

\advitransbox{〈key=val list〉}{〈hbox material〉}
where 〈key=val list〉 is as above and {〈hbox material〉} is whatever can follow an
\hbox command. In particular, the material may contain verbatim commands,
since as for the \hbox it is parsed incrementally.

The optional parameter global indicates that the definition is global and will affect the
following pages, as well as the current page.

By default, the transition affects only the current page.

6.7 Embedded applications

Active-DVI can launch arbitrary applications you need to animate your show.

6.7.1 Launching embedded applications

The LATEX command to launch an application during the presentation is

\adviembed[〈key=value list〉]{〈command〉}

where 〈key=value list〉 is a list of bindings of the following kind:

name=〈name〉
Allows to refer to the embedded application as 〈name〉. Anonymous
applications have actually the default name anonymous.

ephemeral=〈name〉

14

This is the default case: the application is specific to a given page.
Launched whenever the page is displayed, the application is killed when
the page is turned.

persistent=〈name〉

Launched only once, the application keeps running in the background,
but is only visible on the page where it has been launched.

sticky=〈name〉
Launched only once, the application keeps running and remains visible
when turning pages. It is also resized and moved as necessary to fit
the page size.

raw=〈name〉
The application is launched each time its embedding command is en-
countered. A raw application is not managed by Active-DVI, except for
the initial launching and the final clean-up that occurs when Active-
DVI exits. You can monitor raw applications with advikillembed

and the associated window mapping facilities for raw applications (see
below).

width=〈dim〉
height=〈dim〉

The application takes 〈dim〉 width (respectively height) space in LATEX.
Both values default to 0pt.

These dimensions are also substituted for all occurrences of !g in the
command string.

6.7.2 Monitoring embedded applications

To monitor embedded applications, Active-DVI provides the advikillembed primitive to
send a signal to any named embedded application. For raw applications, there are additional
functions to map or unmap the window allocated to a named raw application. Mapping or
unmapping windows of non-raw applications is unspecified, since it may interfere in a non
trivial way with Active-DVI’s automatic treatment of those applications.

Monitoring a single application

\advikillembed{〈name〉}

15

Kill the embedded application named 〈name〉. An optional signal value or
symbolic name can be given to send to the designed process: for instance,
\advikillembed[SIGUSR1]{clock} will send the SIGUSR1 signal to the embed-
ded application named clock.

Signal value defaults to -9.

\advimapembed{〈name〉}
Map the window of the embedded applications named 〈name〉.

\adviunmapembed{〈name〉}
Unmap the window of the embedded applications named 〈name〉.

Monitoring a group of embedded applications

The primitives advikillallembed, advimapallembed, and adviunmapallembed behave the
same as their non-all counterparts, except that they operate on all the applications that
have been launched with the given name.

\advikillallembed{〈name〉}
Similar to advikillembed but kill all the embedded applications named 〈name〉.

\advimapallembed{〈name〉}
Map the windows of all the embedded applications named 〈name〉.

\adviunmapallembed{〈name〉}
Unmap the windows of all the embedded applications named 〈name〉.

6.8 Active anchors

Active anchors are annotated pieces of text that get associated activation records. To define
an active anchor, the command is

\advianchor[〈decl〉]{〈tag〉}{〈text〉}
\begin{advianchor}[〈decl〉]{〈tag〉}〈text〉\end{advianchor}

The text is first displayed as usual, then the anchor is drawn according to the
style given by 〈decl〉, and made active. Its activation, which depends on the mode
given by 〈decl〉, will play the record named 〈tag〉.
The declarations 〈decl〉 are of the following form:

over or click

this defines the mode of activation, which is either by moving mouse over
or clicking on the anchor. The default mode is over.

16

box, invisible, or underline

this defines the style in which the anchor should be drawn. The default
style is boxed.

In the environment form, 〈text〉 may contain fragile commands.

\adviemphasize[〈color〉]{〈text〉}
This makes an invisible anchor around 〈text〉, which when activated will redraw
text in a box colored with 〈color〉, which defaults to yellow.

6.9 Postscript specials

Active-DVI can deal with most of PStricks by calling ghostscript on included Postscripts.
However, the interactivity between Active-DVI and Postscripts is not always properly work-
ing.

• Since characters are rendered by Active-DVI, some PStricks are not allowed.

• Some change of repairs are also not yet correctly performed.

6.9.1 Overlays

The overlay class implements overlays with PStricks. By contrast, Active-DVI implements
overlays directly, using records and plays. This is more efficient, and of course more natural.
(In fact, Active-DVI chooses the cumulative semantics of overlays, displaying all layers below
the current overlay.)

The xprosper style, derived from the prosper class, uses the overlay class and works
with Active-DVI in exactly the same way (relaxing the @loop macro inhibits all layers, but
the first page).

6.9.2 PStricks

Active-DVI can deal with most of PStricks.

+ Simple drawings work

+ \SpecialCoor works, i.e. commands of the form \rput{A}{bla bla} works where A

is a node

+ Connections between nodes \ncarc, \ncarc, also works.

However, some PStricks are known not to work.

– Labels over arrows \Aput, Bput, etc. (they change the Postscript coordinates...)

– pspicture (idem, but drawings that are not embedded in pspictures work).

17

7 Auxilliary LATEX packages

7.1 The superpose package

This package allows superposition of horizontal material, creating the smallest horizontal
box that fits all of the superpositions.

\usepackage{superpose}

The package defines a single environment:

\begin{superpose}[〈alignment〉]〈list〉\end{superpose}
The 〈alignment〉 can be one the letters c (default value), l, or r.

Items of the list are separated by \\ as in tabular environments. Each item
should be a horizontal material.

7.2 The bubble package

This package draws bubbles over some text.

\usepackage{bubble}

\usepackage[ps]{bubble}

By default bubbles are produced using the epic and eepic packages, for portability. How-
ever, for better rendering and easier parameterization, bubbles can also be drawn using the
pst-node package of the pstricks collection. This is what the ps option is designed for.

The package defines a single command:

\bubble[〈key=value list〉]{〈anchor〉}[〈ps options〉](〈pos〉){〈text〉}
The 〈key=value list〉 is a list of bindings of the following kind:

bg=〈color〉 (default value is yellow)

The background color for annotations.

unit=〈dim〉 (default value is yellow)

Set the package unit to 〈dim〉.
col=〈colspec〉 (default value is c)

Where 〈colspec〉 is a column specification for the tabular environment.
Moreover, the following abbreviations are recognized:

key expands to
c col=c

l col=l

r col=r

p=〈w〉 col=p{〈w〉}

key expands to
C col={>{$}c<{$}}
L col={>{$}l<{$}}
R col={>{$}r<{$}}
P〈w〉 col={>{$}p{〈w〉}<{$}}

18

〈pos〉 is the optional relative position of the annotation, it defaults to 1, 1, and is
counted in the package units.

〈ps options〉 are passed to the command \psset) in ps mode and ignored other-
wise.

Parameters (color and tabular columns specifications) can also be set globally using the
command:

\setkeys{bubbleset}{〈key=value list〉}

7.3 The annotations package

This package uses active anchors and the bubbles package to provide annotations by raising
a bubble when the cursor is over the anchor.

The package defines a single command

\adviannot[〈key=value list〉]{〈anchor〉}[〈ps options〉](〈pos〉){〈text〉}
whose options are identical to those of the \bubblemacro; however the bubble
appears within an active anchor.

7.4 The advi-graphicx package

This 3-lines long package loads the graphicx.sty package and provides declarations so that
JPEG, EPS, TIF, TIFF source images can be embedded: Active-DVI will preview these
images directly while other drivers will translate them on demand.

A Limitations

Postscript Fonts

Postscript fonts are not natively handled by Active-DVI. You must use the command dvicopy

to expand those virtual fonts to base fonts before visualization with Active-DVI. (For in-
stance, dvicopy talk.dvi talk.expanded; advi talk.expanded very often does the trick.)

Inlined Postscript and Ghostscript

PS relies on ghostscript to display Postscript inlined specials. However, some earlier re-
leases of ghostscript implements the Postscript flushpage command as a XFlush call
which does not force the evaluation of commands, and thus makes the synchronization be-
tween ghostscript and Active-DVI drawings uncontrollable. In this case, the interleaving
of inlined postscript and other material may be inconsistent.

Fortunately, recent versions of ghostscript (> 6.5) have fixed this problem by using
XSync(false) instead. If you use those versions of ghostscript, inlined specials should be
correctly rendered.

19

Unfortunately, some releases of version 6.5x also carry a small but fatal bug for Active-
DVI, that will hopefully be fixed in future releases. A workaround is available here http:

//cristal.inria.fr/~remy/ghostscript/.

Inlined Postscript change of coordinates

So far, the implementation of inlined Postscript does not correctly handle complex change
of coordinates. (See PStricks section).

B Reporting bugs

Please, send bug reports to mailto:advi@pauillac.inria.fr.
See http://pauillac.inria.fr/advi for up to date information.

C Key bindings

Advi recognizes the keystrokes listed below when typed in its window. Some keystrokes
may optionally be preceded by a number, called arg below, whose interpretation is keystroke
dependant. If arg is unset, its value is 1, unless specified otherwise.

Advi maintains an history of previously visited pages organized as a stack. Additionnally,
the history contains marked pages which are stronger than unmarked pages.

? info – Quick info and key bindings help.
q quit – End of show.

space continue – Move arg pauses forward if any, or do as return otherwise.
n next – Move arg physical pages forward, leaving the history un-

changed.
p previous – Move arg physical pages backward, leaving the history un-

changed.
g go – If arg is unset move to the last page. If arg is the current page

do nothing. Otherwise, push the current page on the history
as marked, and move to the physical pages arg .

, begin – Move to the first page.
. end – Move to the last page.
T Thumbnails – Process thumbnails.
t toc – Display thumbnails if processed, or floating table of content if

available, or do nothing.
a active/passive – toggle advi effects (so that reloading is silent).

20

http://cristal.inria.fr/~remy/ghostscript/
http://cristal.inria.fr/~remy/ghostscript/
mailto:advi@pauillac.inria.fr
http://pauillac.inria.fr/advi

N next pause – Move arg pauses forward (equivalent to continue).
P previous pause – Move arg pauses backward.
^f fullscreen – Adjust the size of the page to fit the entire screen or reset the

page to the default size (toggle).

< smaller – Scale down the resolution by scalestep (default
√√√

2).

> bigger – Scale up the resolution by scalestep (default
√√√

2).

c center – Center the page in the window, and resets the default resolution.

fullpage – Remove margins around the page and change the resolution accord-
ingly.

^L redisplay – Redisplay the current page to the first pause of the page.
r redraw – Redraw the current page to the current pause.
R reload – Reload the file and redraw the current page.

h page left – Moves one screen width toward the left of the page. Does nothing if
the left part of the page is already displayed

l page right – Moves one screen width toward the right of the page. Does nothing if
the right part of the page is already displayed

j page down – Moves one screen height toward the bottom of the page. Jumps to
the top of next page, if there is one, and if the bottom of the page is
already displayed.

k page up – Moves one screen height toward the top of the page. Jumps to the
bottom previous page, if there is one, and if the top of the page is
already displayed.

return forward – Push the current page on the history stack, and move
forward n physical pages.

tab mark and next – Push the current page on the history as marked, and
move forward n physical pages.

backspace back – Move arg pages backward according to the history. The
history stack is poped, accordingly.

escape find mark – Move arg marked pages backward according to the his-
tory. Do nothing if the history does no contain any
marked page.

f load fonts – Load all the fonts used in the documents. By default,
fonts are loaded only when needed.

F make fonts – Does the same as f, and precomputes the glyphs of all
characters used in the document. This takes more time
than loading the fonts, but the pages are drawn faster.

C clear – Erase the image cache.
s scratch – Give a pencil to type characters on the page.
S scratch – Give a pencil to draw lines on the page.

D Index

21

	Installation
	Active-DVI for the impatient
	Safety concerns when using the Active-DVI previewer
	Initialisation files for Active-DVI
	Syntax of initialisation files
	Loading initialisation files
	Automatic setting of options

	Using the Active-DVI previewer
	Command line options
	Cut and paste
	Hyperref
	Floating table of contents and thumbnails
	Moving around
	Using and making special effects

	The html:advi.styhtml: LaTeX package
	Printing the presentation
	Pause, Record and Play
	Images
	Colors
	Background
	Transitions
	Embedded applications
	Launching embedded applications
	Monitoring embedded applications

	Active anchors
	Postscript specials
	Overlays
	PStricks

	Auxilliary LaTeX packages
	The superpose package
	The bubble package
	The annotations package
	The advi-graphicx package

	Limitations
	Reporting bugs
	Key bindings
	Index

