User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0)

Daniel R. Reynolds!, David J. Gardner?,
Alan C. Hindmarsh?, Carol S. Woodward?
and Jean M. Sexton',

I Department of Mathematics
Southern Methodist University

>Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

agials
<
S,

V)

LLNL-SM-668082

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor Southern Methodist University,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or repre-
sents that its use would not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States government, Lawrence Livermore National Security,
LLC, or Southern Methodist University. The views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States government, Lawrence Livermore National Security, LLC, or Southern Methodist
University, and shall not be used for advertising or product endorsement purposes.

Approved for public release; further dissemination unlimited

CONTENTS

Introduction 3
1.1~ Changes from previous Versions oot e e e e e e 4
1.2 Reading this User Guide e 14
1.3 SUNDIALS Release Licenseo i v vttt e e e e e e e e 15
Mathematical Considerations 17
2.1 Adaptive single-step methods e 17
2.2 Interpolation e e 18
2.3 ARKStep — Additive Runge-Kuttamethods 19
2.4 ERKStep — Explicit Runge-Kuttamethods 20
2.5 MRIStep — Multirate infinitesimal stepmethods Lo oL, 20
2.6 EITOTNOTIMSt vt it e it e e e e e e e e e e e e e e e e e e 21
2.7 Timestep adaptivity e e e e e e e 22
2.8 Explicitstability e e 25
2.9 Algebraic SOIVETS v e e e e e e e e e e e e e e e e 26
2.10 Rootfinding e e e e e e 34
2.11 Inequality Constraints e e e e 35
Code Organization 37
3.1 ARKode organizationo i e e e e e e e e e e e e e e e e e e 37
Using ARKStep for C and C++ Applications 41
4.1 Accesstolibrary and header files e 41
42 DataTypes o v v e e e e e e e e e e e e e 42
43 HeaderFiles e e e e 43
4.4 A skeleton of the user’s main program oL i L e e e e 44
4.5 User-callable functions L e e e e 48
4.6 User-supplied functions i it i e e e e e e e e e e 102
477 Preconditioner modules L. L e e e e e e e e e e 115
Using ERKStep for C and C++ Applications 125
5.1 Accesstolibrary and header files e 125
5.2 DataTypes . . . o v o i e e e e e e e e e e e e 125
5.3 HeaderFiles e e e e 126
5.4 A skeleton of the user’s main programo e et e e 127
5.5 ERKStep User-callable functions L 129
5.6 User-supplied functions i i i e e e e e e e e e 156
Using MRIStep for C and C++ Applications 161
6.1 Accesstolibrary and header files 161
6.2 DataTyYPES . . . v v o i e e e e e e e e e e e e e e e e e 161

6.3
6.4
6.5
6.6

Header Files
A skeleton of the user’s main programot e e e e e e e e e e e
MRIStep User-callable functions e e
User-supplied functions L e

Using ARKode for Fortran Applications

7.1
7.2

ARKode Fortran 2003 Interface Modules oo oo
FARKODE, an Interface Module for FORTRAN Applications

Butcher Table Data Structure

8.1

ARKodeButcherTable functions e e

Vector Data Structures

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17

Description of the NVECTOR Modules oo ittt e e e e e e e
Description of the NVECTOR operations
The NVECTOR_SERIAL Module e
The NVECTOR_PARALLEL Module i
The NVECTOR_OPENMP Module i i e
The NVECTOR_PTHREADS Module
The NVECTOR_PARHYP Module
The NVECTOR_PETSCModule et et et
The NVECTOR_CUDA Modulettt e e et
The NVECTOR_RAJA Module e it
The NVECTOR_OPENMPDEV Module,
The NVECTOR_TRILINOS Module
The NVECTOR_MANYVECTOR Module it
The NVECTOR_MPIMANYVECTOR Module
The NVECTOR_MPIPLUSX Module i i
NVECTOR Examples oo e e e e e e e e e e e e e e e e e
NVECTOR functions required by ARKode

10 Matrix Data Structures

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

Description of the SUNMATRIX Modules
Description of the SUNMATRIX operations
Compatibility of SUNMATRIX types i it e e e et
The SUNMATRIX_DENSE Module i
The SUNMATRIX_BAND Module i et
The SUNMATRIX_SPARSE Module i
The SUNMATRIX_SLUNRLOCModule i
SUNMATRIX Examples
SUNMATRIX functions required by ARKode

11 Description of the SUNLinearSolver module

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

The SUNLinearSolver APL. e e e e
ARKode SUNLinearSolver interface i e e
The SUNLinSol Dense Module e
The SUNLinSol_Band Module e
The SUNLinSol_LapackDense Module
The SUNLinSol_LapackBandModule
The SUNLinSol KLU Module e e e e st
The SUNLinSol_SuperLUDIST Module
The SUNLinSol_SuperLUMT Module

11.10 The SUNLinSol_cuSolverSp_batchQR Module
11.11 The SUNLinSol_SPGMR Module e e e e e
11.12 The SUNLinSol_SPEFGMR Module e e e e e

11.13 The SUNLinSol_SPBCGS Module e e s e e
11.14 The SUNLinSol_SPTFQMR Module o s e e
11.15 The SUNLinSol PCGModule e et
11.16 SUNLinearSolver Examples

12 Description of the SUNNonlinearSolver Module
12.1 The SUNNonlinearSolver API e
12.2 ARKode SUNNonlinearSolver interface 0 i it i i
12.3 The SUNNonlinearSolver_Newton implementation
12.4 The SUNNonlinearSolver_FixedPoint implementation
12.5 The SUNNonlinearSolver_PetscSNES implementation

13 ARKode Installation Procedure
13.1 CMake-based installation e e e e e e e
13.2 Installed libraries and exported header files,

14 Appendix: ARKode Constants
14.1 ARKode input constants oo e e e e e e e e e
14.2 ARKode output CoOnStants v v v it e e e e e e e e e e e e e e e e e e

15 Appendix: Butcher tables
15.1 Explicit Butchertables e e e e e e
15.2 TImplicit Butchertables e e e
15.3 Additive Butcher tables e e

16 Appendix: SUNDIALS Release History
Bibliography

Index

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

This is the documentation for ARKode, an adaptive step time integration package for stiff, nonstiff and mixed
stiff/nonstiff systems of ordinary differential equations (ODEs) using Runge-Kutta (i.e. one-step, multi-stage) meth-
ods. The ARKode solver is a component of the SUNDIALS suite of nonlinear and differential/algebraic equation
solvers. It is designed to have a similar user experience to the CVODE solver, including user modes to allow adaptive
integration to specified output times, return after each internal step and root-finding capabilities, and for calculations in
serial, using shared-memory parallelism (via OpenMP, Pthreads, CUDA, Raja) or distributed-memory parallelism (via
MPI). The default integration and solver options should apply to most users, though control over nearly all internal
parameters and time adaptivity algorithms is enabled through optional interface routines.

ARKode is written in C, with C++ and Fortran interfaces.

ARKode is developed by Southern Methodist University, with support by the US Department of Energy through the
FASTMath SciDAC Institute, under subcontract B598130 from Lawrence Livermore National Laboratory.

CONTENTS 1

https://computing.llnl.gov/casc/sundials/main.html
https://computing.llnl.gov/casc/sundials/description/description.html#descr_cvode
http://www.smu.edu
http://www.doe.gov
http://www.fastmath-scidac.org/
http://www.llnl.gov

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The ARKode infrastructure provides adaptive-step time integration modules for stiff, nonstiff and mixed stiff/nonstiff
systems of ordinary differential equations (ODEs). ARKode itself is structured to support a wide range of one-step (but
multi-stage) methods, allowing for rapid development of parallel implementations of state-of-the-art time integration
methods. At present, ARKode is packaged with two time-stepping modules, ARKStep and ERKStep.

ARKStep supports ODE systems posed in split, linearly-implicit form,

My = fEty) + f(ty), ylto) = o, (1.1)

where ¢ is the independent variable, y is the set of dependent variables (in R™V), M is a user-specified, nonsingular
operator from RV to R”, and the right-hand side function is partitioned into up to two components:

 fE(t,y) contains the “nonstiff” time scale components to be integrated explicitly, and
 fI(t,y) contains the “stiff” time scale components to be integrated implicitly.

Either of these operators may be disabled, allowing for fully explicit, fully implicit, or combination implicit-explicit
(ImEx) time integration.

The algorithms used in ARKStep are adaptive- and fixed-step additive Runge Kutta methods. Such methods are
defined through combining two complementary Runge-Kutta methods: one explicit (ERK) and the other diagonally
implicit (DIRK). Through appropriately partitioning the ODE right-hand side into explicit and implicit components
(1.1), such methods have the potential to enable accurate and efficient time integration of stiff, nonstiff, and mixed
stiff/nonstiff systems of ordinary differential equations. A key feature allowing for high efficiency of these methods
is that only the components in f(¢,) must be solved implicitly, allowing for splittings tuned for use with optimal
implicit solver algorithms.

This framework allows for significant freedom over the constitutive methods used for each component, and ARKode
is packaged with a wide array of built-in methods for use. These built-in Butcher tables include adaptive explicit
methods of orders 2-8, adaptive implicit methods of orders 2-5, and adaptive ImEx methods of orders 3-5.

ERKStep focuses specifically on problems posed in explicit form,

v = f(ty), y(to) = yo. (1.2)

allowing for increased computational efficiency and memory savings. The algorithms used in ERKStep are adaptive-
and fixed-step explicit Runge Kutta methods. As with ARKStep, the ERKStep module is packaged with adaptive
explicit methods of orders 2-8.

For problems that include nonzero implicit term fZ(¢,y), the resulting implicit system (assumed nonlinear, unless
specified otherwise) is solved approximately at each integration step, using a modified Newton method, inexact New-
ton method, or an accelerated fixed-point solver. For the Newton-based methods and the serial or threaded NVECTOR
modules in SUNDIALS, ARKode may use a variety of linear solvers provided with SUNDIALS, including both di-
rect (dense, band, or sparse) and preconditioned Krylov iterative (GMRES [S57986], BiCGStab [V1992], TFQMR
[F1993], FGMRES [S571993], or PCG [HS1952]) linear solvers. When used with the MPI-based parallel, PETSc,
hypre, CUDA, and Raja NVECTOR modules, or a user-provided vector data structure, only the Krylov solvers are

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

available, although a user may supply their own linear solver for any data structures if desired. For the serial or
threaded vector structures, we provide a banded preconditioner module called ARKBANDPRE that may be used
with the Krylov solvers, while for the MPI-based parallel vector structure there is a preconditioner module called
ARKBBDPRE which provides a band-block-diagonal preconditioner. Additionally, a user may supply more optimal,
problem-specific preconditioner routines.

1.1 Changes from previous versions

1.1.1 Changes in 4.1.0

Fixed a build system bug related to finding LAPACK/BLAS.
Fixed a build system bug related to checking if the KLU library works.

Fixed a build system bug related to finding PETSc when using the CMake variables PETSC_INCLUDES and
PETSC_LIBRARIES instead of PETSC_DIR.

Added a new build system option, CUDA_ARCH, that can be used to specify the CUDA architecture to compile for.

Fixed a bug in the Fortran 2003 interfaces to the ARKode Butcher table routines and structure. This includes changing
the ARKodeButcherTable type to be a type (c_ptr) in Fortran.

Added two utility functions, SUNDIALSFileOpen and SUNDIALSFileClose for creating/destroying file point-
ers that are useful when using the Fortran 2003 interfaces.

Added support for a user-supplied function to update the prediction for each implicit stage solution in ARKStep. If
supplied, this routine will be called after any existing ARKStep predictor algorithm completes, so that the predictor
may be modified by the user as desired. The new user-supplied routine has type ARKStepStagePredictFn, and
may be set by calling ARKStepSetStagePredictFn ().

The MRIStep module has been updated to support attaching different user data pointers to the inner and outer integra-
tors. If applicable, user codes will need to add a call to ARKStepSetUserData () to attach their user data pointer
to the inner integrator memory as MRIStepSetUserData () will not set the pointer for both the inner and outer
integrators. The MRIStep examples have been updated to reflect this change.

Added support for constant damping to the SUNNonlinearSolver_FixedPoint module
when wusing Anderson acceleration. See SUNNonlinearSolver_FixedPoint description and the
SUNNonlinSolSetDamping FixedPoint () for more details.

1.1.2 Changes in v4.0.0

Build system changes

Increased the minimum required CMake version to 3.5 for most SUNDIALS configurations, and 3.10 when CUDA or
OpenMP with device offloading are enabled.

The CMake option BLAS_ENABLE and the variable BLAS_LIBRARIES have been removed to simplify builds
as SUNDIALS packages do not use BLAS directly. For third party libraries that require linking to BLAS,
the path to the BLAS library should be included in the _ LIBRARIES variable for the third party library e.g.,
SUPERLUDIST_LIBRARIES when enabling SuperLU_DIST.

Fixed a bug in the build system that prevented the PThreads NVECTOR module from being built.
NVECTOR module changes

Two new functions were added to aid in creating custom NVECTOR objects. The constructor N_VNewEmpty ()
allocates an “empty” generic NVECTOR with the object’s content pointer and the function pointers in the operations
structure initialized to NULL. When used in the constructor for custom objects this function will ease the introduction of

4 Chapter 1. Introduction

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

any new optional operations to the NVECTOR API by ensuring only required operations need to be set. Additionally,
the function N_VCopyOps () has been added to copy the operation function pointers between vector objects. When
used in clone routines for custom vector objects these functions also will ease the introduction of any new optional
operations to the NVECTOR API by ensuring all operations are copied when cloning objects.

Two new NVECTOR implementations, NVECTOR_MANYVECTOR and NVECTOR_MPIMANY VECTOR, have
been created to support flexible partitioning of solution data among different processing elements (e.g., CPU + GPU) or
for multi-physics problems that couple distinct MPI-based simulations together. This implementation is accompanied
by additions to user documentation and SUNDIALS examples.

One new required vector operation and ten new optional vector operations have been added to the NVEC-
TOR APIL. The new required operation, N_VGetLength (), returns the global length of an N_Vector.
The optional operations have been added to support the new NVECTOR_MPIMANYVECTOR implementa-
tion. The operation N_VGetCommunicator () must be implemented by subvectors that are combined to cre-
ate an NVECTOR_MPIMANYVECTOR, but is not used outside of this context. The remaining nine opera-
tions are optional local reduction operations intended to eliminate unnecessary latency when performing vec-
tor reduction operations (norms, etc.) on distributed memory systems. The optional local reduction vector
operations are N_VDotProdLocal (), N_VMaxNormLocal (), N_VMinLocal (), N_VL1INormLocal (),
N_VWwSgrSumLocal (), N_VWSqgrSumMaskLocal (), N_VInvITestLocal (), N_VConstrMaskLocal (),
and N_VMinQuotientLocal (). If an NVECTOR implementation defines any of the local operations as NULL,
then the NVECTOR_MPIMANY VECTOR will call standard NVECTOR operations to complete the computation.

An additional NVECTOR implementation, NVECTOR_MPIPLUSX, has been created to support the MPI+X
paradigm where X is a type of on-node parallelism (e.g., OpenMP, CUDA). The implementation is accompanied
by additions to user documentation and SUNDIALS examples.

The x_MPICuda and x_MPIRaja functions have been removed from the NVECTOR_CUDA and NVEC-
TOR_RAJA implementations respectively. Accordingly, the nvector_mpicuda.h, nvector_mpiraja.h,
libsundials_nvecmpicuda.lib,and l1ibsundials_nvecmpicudaraja.lib files have been removed.
Users should use the NVECTOR_MPIPLUSX module coupled in conjunction with the NVECTOR_CUDA or NVEC-
TOR_RAJA modules to replace the functionality. The necessary changes are minimal and should require few code
modifications. See the programs in examples/ida/mpicuda and examples/ida/mpiraja for examples
of how to use the NVECTOR_MPIPLUSX module with the NVECTOR_CUDA and NVECTOR_RAJA modules
respectively.

Fixed a memory leak in the NVECTOR_PETSC module clone function.

Made performance improvements to the NVECTOR_CUDA module. Users who utilize a non-default stream should
no longer see default stream synchronizations after memory transfers.

Added a new constructor to the NVECTOR_CUDA module that allows a user to provide custom allocate and free
functions for the vector data array and internal reduction buffer.

Added new Fortran 2003 interfaces for most NVECTOR modules. See the Using ARKode for Fortran Applications
section for more details.

Added three new NVECTOR utility functions, N_VGetVecAtIndexVectorArray ()
N_VSetVecAtIndexVectorArray (), and N_VNewVectorArray (), for working with N_Vector
arrays when using the Fortran 2003 interfaces.

SUNMatrix module changes

Two new functions were added to aid in creating custom SUNMATRIX objects. The constructor
SUNMatNewEmpty () allocates an “empty” generic SUNMATRIX with the object’s content pointer and the function
pointers in the operations structure initialized to NULL. When used in the constructor for custom objects this function
will ease the introduction of any new optional operations to the SUNMATRIX API by ensuring only required opera-
tions need to be set. Additionally, the function SUNMatCopyOps () has been added to copy the operation function
pointers between matrix objects. When used in clone routines for custom matrix objects these functions also will ease

1.1. Changes from previous versions 5

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

the introduction of any new optional operations to the SUNMATRIX API by ensuring all operations are copied when
cloning objects.

A new operation, SUNMatMatvecSetup (), was added to the SUNMATRIX API. Users who have implemented
custom SUNMATRIX modules will need to at least update their code to set the corresponding ops structure member,
matvecsetup, to NULL.

A new operation, SUNMatMatvecSetup (), was added to the SUNMATRIX API to perform any setup necessary
for computing a matrix-vector product. This operation is useful for SUNMATRIX implementations which need to
prepare the matrix itself, or communication structures before performing the matrix-vector product. Users who have
implemented custom SUNMATRIX modules will need to at least update their code to set the corresponding ops
structure member, matvecsetup, to NULL.

The generic SUNMATRIX API now defines error codes to be returned by SUNMATRIX operations. Operations which
return an integer flag indiciating success/failure may return different values than previously.

A new SUNMATRIX (and SUNLINEARSOLVER) implementation was added to facilitate the use of the Su-
perLU_DIST library with SUNDIALS.

Added new Fortran 2003 interfaces for most SUNMATRIX modules. See the Using ARKode for Fortran Applications
section for more details.

SUNLinearSolver module changes

A new function was added to aid in creating custom SUNLINEARSOLVER objects. = The constructor
SUNLinSolNewEmpty () allocates an “empty” generic SUNLINEARSOLVER with the object’s content pointer
and the function pointers in the operations structure initialized to NULL. When used in the constructor for custom
objects this function will ease the introduction of any new optional operations to the SUNLINEARSOLVER API by
ensuring only required operations need to be set.

The return type of the SUNLINEARSOLVER API function SUNLinSolLastFlag () has changed from long
int to sunindextype to be consistent with the type used to store row indices in dense and banded linear solver
modules.

Added a new optional operation to the SUNLINEARSOLVER API, SUNLinSolGetID (), that returns a
SUNLinearSolver_ID foridentifying the linear solver module.

The SUNLINEARSOLVER API has been updated to make the initialize and setup functions optional.

A new SUNLINEARSOLVER (and SUNMATRIX) implementation was added to facilitate the use of the Su-
perLU_DIST library with SUNDIALS.

Added a new SUNLinearSolver implementation, SUNLinearSolver_cuSolverSp_batchQR, which leverages
the NVIDIA cuSOLVER sparse batched QR method for efficiently solving block diagonal linear systems on NVIDIA
GPUs.

Added three new accessor functions to the SUNLinSol_KLU module, SUNLinSol KLUGetSymbolic (),
SUNLinSol_KLUGetNumeric (), and SUNLinSol_ KLUGetCommon (), to provide user access to the under-
lying KLU solver structures.

Added new Fortran 2003 interfaces for most SUNLINEARSOLVER modules. See the Using ARKode for Fortran
Applications section for more details.

SUNNonlinearSolver module changes

A new function was added to aid in creating custom SUNNONLINEARSOLVER objects. The constructor
SUNNonlinSolNewEmpty () allocates an “empty” generic SUNNONLINEARSOLVER with the object’s content
pointer and the function pointers in the operations structure initialized to NULL. When used in the constructor for cus-
tom objects this function will ease the introduction of any new optional operations to the SUNNONLINEARSOLVER
API by ensuring only required operations need to be set.

6 Chapter 1. Introduction

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

To facilitate the wuse of user supplied nonlinear solver convergence test functions the
SUNNonlinSolSetConvTestFn () function in the SUNNONLINEARSOLVER API has been updated to
take a void~ data pointer as input. The supplied data pointer will be passed to the nonlinear solver convergence test
function on each call.

The inputs values passed to the first two inputs of the SUNNonlinSolSolve () functionin the SUNNONLINEAR-
SOLVER have been changed to be the predicted state and the initial guess for the correction to that state. Additionally,
the definitions of SUNNonlinSolLSetupFnand SUNNonlinSolLSolveFninthe SUNNONLINEARSOLVER
API have been updated to remove unused input parameters.

Added a new SUNNonlinearSolver implementation, SUNNonlinsol_PetscSNES, which interfaces to the
PETSc SNES nonlinear solver API.

Added new Fortran 2003 interfaces for most SUNNONLINEARSOLVER modules. See the Using ARKode for Fortran
Applications section for more details.

ARKode changes

The MRIStep module has been updated to support explicit, implicit, or IMEX methods as the fast integrator using the
ARKStep module. As a result some function signatures have been changed including MRTStepCreate () which
now takes an ARKStep memory structure for the fast integration as an input.

Fixed a bug in the ARKStep time-stepping module that would result in an infinite loop if the nonlinear solver failed to
converge more than the maximum allowed times during a single step.

Fixed a bug that would result in a “too much accuracy requested” error when using fixed time step sizes with explicit
methods in some cases.

Fixed a bug in ARKStep where the mass matrix linear solver setup function was not called in the Matrix-free case.

Fixed a minor bug in ARKStep where an incorrect flag is reported when an error occurs in the mass matrix setup or
Jacobian-vector product setup functions.

Fixed a memeory leak in FARKODE when not using the default nonlinear solver.

The reinitialization functions ERKStepReInit (), ARKStepRelInit (), and MRIStepReInit () have been
updated to retain the minimum and maxiumum step size values from before reinitialization rather than resetting them
to the default values.

Removed extraneous calls to N_VMin () for simulations where the scalar valued absolute tolerance, or all entries of
the vector-valued absolute tolerance array, are strictly positive. In this scenario, ARKode will remove at least one
global reduction per time step.

The ARKLS interface has been updated to only zero the Jacobian matrix before calling a user-supplied Jacobian
evaluation function when the attached linear solver has type SUNLINEARSOLVER_DIRECT.

A new linear solver interface function ARKLsLinSysFn () was added as an alternative method for evaluating the
linear system A = M — ~.J.

Added two new embedded ARK methods of orders 4 and 5 to ARKode (from /[KC2019]).

Support for optional inequality constraints on individual components of the solution vector has been added
the ARKode ERKStep and ARKStep modules. See the descriptions of ERKStepSetConstraints () and
ARKStepSetConstraints () for more details. Note that enabling constraint handling requires the NVECTOR
operations N_VMinQuotient (), N_VConstrMask (), and N_VCompare () that were not previously required
by ARKode.

Added two new ‘Get’ functions to ARKStep, ARKStepGetCurrentGamma (), and
ARKStepGetCurrentState (), that may be useful to users who choose to provide their own nonlinear
solver implementation.

Add two new ‘Set’ functions to MRIStep, MRIStepSetPreInnerFn () and MRIStepSetPostInnerFn () for
performing communication or memory transfers needed before or after the inner integration.

1.1. Changes from previous versions 7

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

A new Fortran 2003 interface to ARKode was added. This includes Fortran 2003 interfaces to the ARKStep, ERKStep,
and MRIStep time-stepping modules. See the Using ARKode for Fortran Applications section for more details.

1.1.3 Changes in v3.1.0

An additional NVECTOR implementation was added for the Tpetra vector from the Trilinos library to facilitate inter-
operability between SUNDIALS and Trilinos. This implementation is accompanied by additions to user documenta-
tion and SUNDIALS examples.

A bug was fixed where a nonlinear solver object could be freed twice in some use cases.

The EXAMPLES_ENABLE_RAJA CMake option has been removed. The option EXAMPLES_ENABLE_CUDA en-
ables all examples that use CUDA including the RAJA examples with a CUDA back end (if the RAJA NVECTOR is
enabled).

The implementation header file arkode_impl.h is no longer installed. This means users who are directly manipulating
the ARKodeMenm structure will need to update their code to use ARKode’s public API.

Python is no longer required to run make test and make test_install.

Fixed a bug in ARKodeButcherTable_ Write when printing a Butcher table without an embedding.

1.1.4 Changes in v3.0.2

Added information on how to contribute to SUNDIALS and a contributing agreement.

1.1.5 Changes in v3.0.1

A bug in ARKode where single precision builds would fail to compile has been fixed.

1.1.6 Changes in v3.0.0

The ARKode library has been entirely rewritten to support a modular approach to one-step methods, which should
allow rapid research and development of novel integration methods without affecting existing solver functionality.
To support this, the existing ARK-based methods have been encapsulated inside the new ARKStep time-stepping
module. Two new time-stepping modules have been added:

* The ERKStep module provides an optimized implementation for explicit Runge-Kutta methods with reduced
storage and number of calls to the ODE right-hand side function.

e The MRIStep module implements two-rate explicit-explicit multirate infinitesimal step methods utilizing dif-
ferent step sizes for slow and fast processes in an additive splitting.

This restructure has resulted in numerous small changes to the user interface, particularly the suite of “Set” routines
for user-provided solver parameters and “Get” routines to access solver statistics, that are now prefixed with the name
of time-stepping module (e.g., ARKStep or ERKStep) instead of ARKode. Aside from affecting the names of these
routines, user-level changes have been kept to a minimum. However, we recommend that users consult both this
documentation and the ARKode example programs for further details on the updated infrastructure.

As part of the ARKode restructuring an ARKodeBut cherTable structure has been added for storing Butcher tables.
Functions for creating new Butcher tables and checking their analytic order are provided along with other utility
routines. For more details see Butcher Table Data Structure.

Two changes were made in the initial step size algorithm:

* Fixed an efficiency bug where an extra call to the right hand side function was made.

8 Chapter 1. Introduction

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

* Changed the behavior of the algorithm if the max-iterations case is hit. Before the algorithm would exit with
the step size calculated on the penultimate iteration. Now it will exit with the step size calculated on the final
iteration.

ARKode’s dense output infrastructure has been improved to support higher-degree Hermite polynomial interpolants
(up to degree 5) over the last successful time step.

ARKode’s previous direct and iterative linear solver interfaces, ARKDLS and ARKSPILS, have been merged into a
single unified linear solver interface, ARKLS, to support any valid SUNLINSOL module. This includes DIRECT and
ITERATIVE types as well as the new MATRIX_ITERATIVE type. Details regarding how ARKLS utilizes linear
solvers of each type as well as discussion regarding intended use cases for user-supplied SUNLinSol implementations
are included in the chapter Description of the SUNLinearSolver module. All ARKode examples programs and the
standalone linear solver examples have been updated to use the unified linear solver interface.

The user interface for the new ARKLS module is very similar to the previous ARKDLS and ARKSPILS interfaces.
Additionally, we note that Fortran users will need to enlarge their 1 out array of optional integer outputs, and update
the indices that they query for certain linear-solver-related statistics.

The names of all constructor routines for SUNDIALS-provided SUNLinSol implementations have been up-
dated to follow the naming convention SUNLinSol_ where = is the name of the linear solver. The new
names are SUNLinSol_Band, SUNLinSol_Dense, SUNLinSol_KLU, SUNLinSol_LapackBand,
SUNLinSol_LapackDense, SUNLinSol_PCG, SUNLinSol_SPBCGS, SUNLinSol_SPFGMR,
SUNLinSol_SPGMR, SUNLinSol_ SPTFQMR, and SUNLinSol_SuperLUMT. Solver-specific “set” rou-
tine names have been similarly standardized. To minimize challenges in user migration to the new names, the previous
routine names may still be used; these will be deprecated in future releases, so we recommend that users migrate to
the new names soon. All ARKode example programs and the standalone linear solver examples have been updated to
use the new naming convention.

The SUNBandMat rix constructor has been simplified to remove the storage upper bandwidth argument.

SUNDIALS integrators have been updated to utilize generic nonlinear solver modules defined through the SUNNON-
LINSOL API. This API will ease the addition of new nonlinear solver options and allow for external or user-supplied
nonlinear solvers. The SUNNONLINSOL API and SUNDIALS provided modules are described in Description of the
SUNNonlinearSolver Module and follow the same object oriented design and implementation used by the NVector,
SUNMatrix, and SUNLinSol modules. Currently two SUNNONLINSOL implementations are provided, SUNNon-
linSol_Newton and SUNNonlinSol_FixedPoint. These replicate the previous integrator specific implementations of a
Newton iteration and an accelerated fixed-point iteration, respectively. Example programs using each of these nonlin-
ear solver modules in a standalone manner have been added and all ARKode example programs have been updated to
use generic SUNNonlinSol modules.

As with previous versions, ARKode will use the Newton solver (now provided by SUNNonlinSol_Newton) by default.
Use of the ARKStepSetLinear () routine (previously named ARKodeSetLinear) will indicate that the problem
is linearly-implicit, using only a single Newton iteration per implicit stage. Users wishing to switch to the accelerated
fixed-point solver are now required to create a SUNNonlinSol_FixedPoint object and attach that to ARKode, instead
of calling the previous ARKodeSetFixedPoint routine. See the documentation sections A skeleton of the user’s
main program, Nonlinear solver interface functions, and The SUNNonlinearSolver_FixedPoint implementation for
further details, or the serial C example program ark_brusselator_fp.c for an example.

Three fused vector operations and seven vector array operations have been added to the NVECTOR APL
These optional operations are disabled by default and may be activated by calling vector specific routines af-
ter creating an NVector (see Description of the NVECTOR Modules for more details). The new operations
are intended to increase data reuse in vector operations, reduce parallel communication on distributed mem-
ory systems, and lower the number of kernel launches on systems with accelerators. The fused operations
are N_VLinearCombination, N_VScaleAddMulti, and N_VDotProdMulti, and the vector array opera-
tions are N_VLinearCombinationVectorArray, N_VScaleVectorArray, N_VConstVectorArray,
N_VWrmsNormVectorArray, N_VWrmsNormMaskVectorArray, N_VScaleAddMultiVectorArray,
and N_VLinearCombinationVectorArray. If an NVector implementation defines any of these operations
as NULL, then standard N'Vector operations will automatically be called as necessary to complete the computation.

1.1. Changes from previous versions 9

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Multiple changes to the CUDA NVECTOR were made:

e Changed the N_VMake_Cuda function to take a host data pointer and a device data pointer instead of an
N_VectorContent_Cuda object.

* Changed N_VGetLength_Cuda to return the global vector length instead of the local vector length.
¢ Added N_VGetLocalLength_Cuda to return the local vector length.

¢ Added N_VGetMPIComm_Cuda to return the MPI communicator used.

* Removed the accessor functions in the namespace suncudavec.

¢ Added the ability to set the cudaStream_t used for execution of the CUDA NVECTOR kernels. See the
function N_VSetCudaStreams_Cuda.

¢ Added N_VNewManaged_Cuda, N_VMakeManaged_Cuda, and N_VIsManagedMemory_Cuda func-
tions to accommodate using managed memory with the CUDA NVECTOR.

Multiple changes to the RAJA NVECTOR were made:
e Changed N_VGetLength_Ra ja to return the global vector length instead of the local vector length.
* Added N_VGetLocalLength_Raja to return the local vector length.
¢ Added N_VGetMPIComm_Ra ja to return the MPI communicator used.
* Removed the accessor functions in the namespace sunrajavec.

A new NVECTOR implementation for leveraging OpenMP 4.5+ device offloading has been added, NVEC-
TOR_OpenMPDEV. See The NVECTOR_OPENMPDEYV Module for more details.

1.1.7 Changes in v2.2.1

Fixed a bug in the CUDA NVECTOR where the N_VInvTest operation could write beyond the allocated vector
data.

Fixed library installation path for multiarch systems. This fix changes the default library installa-
tion path to CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_LIBDIR from CMAKE_INSTALL_PREFIX/lib.
CMAKE_INSTALL_LIBDIR is automatically set, but is available as a CMAKE option that can modified.

1.1.8 Changes in v2.2.0

Fixed a problem with setting sunindextype which would occur with some compilers (e.g. armclang) that did not
define __STDC_VERSTION__.

Added hybrid MPI/CUDA and MPI/RAJA vectors to allow use of more than one MPI rank when using a GPU system.
The vectors assume one GPU device per MPI rank.

Changed the name of the RAJA NVECTOR library to libsundials_nveccudaraja.lib from
libsundials_nvecraja.lib to better reflect that we only support CUDA as a backend for RAJA currently.

Several changes were made to the build system:
* CMake 3.1.3 is now the minimum required CMake version.

e Deprecate the behavior of the SUNDIALS_INDEX_TYPE CMake option and added the
SUNDIALS_INDEX_SIZE CMake option to select the sunindextype integer size.

¢ The native CMake FindMPI module is now used to locate an MPI installation.

10 Chapter 1. Introduction

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

o« If MPI is enabled and MPI compiler wrappers are not set, the build system will check if
CMAKE_<language>_COMPILER can compile MPI programs before trying to locate and use an MPI in-
stallation.

» The previous options for setting MPI compiler wrappers and the executable for running MPI programs have
been have been depreated. The new options that align with those used in native CMake FindMPI module are
MPI_C_COMPILER,MPI_CXX_COMPILER,MPI_Fortran_COMPILER, and MPIEXEC_EXECUTABLE.

e When a Fortran name-mangling scheme is needed (e.g., LAPACK_ENABLE is ON) the build system
will infer the scheme from the Fortran compiler. If a Fortran compiler is not available or the in-
ferred or default scheme needs to be overridden, the advanced options SUNDIALS_F77_FUNC_CASE and
SUNDIALS_F77_FUNC_UNDERSCORES can be used to manually set the name-mangling scheme and bypass
trying to infer the scheme.

¢ Parts of the main CMakeLists.txt file were moved to new files in the src and example directories to make the
CMake configuration file structure more modular.

1.1.9 Changes in v2.1.2
Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default to locate shared libraries
on OSX.

Fixed Windows specific problem where sunindextype was not correctly defined when using 64-bit integers for the
SUNDIALS index type. On Windows sunindextype is now defined as the MSVC basic type ___int 64.

Added sparse SUNMatrix “Reallocate” routine to allow specification of the nonzero storage.

Updated the KLU SUNLinearSolver module to set constants for the two reinitialization types, and fixed a bug in the
full reinitialization approach where the sparse SUNMatrix pointer would go out of scope on some architectures.

Updated the “ScaleAdd” and “ScaleAddI” implementations in the sparse SUNMatrix module to more optimally handle
the case where the target matrix contained sufficient storage for the sum, but had the wrong sparsity pattern. The sum
now occurs in-place, by performing the sum backwards in the existing storage. However, it is still more efficient if the
user-supplied Jacobian routine allocates storage for the sum I 4-.J or M + ~J manually (with zero entries if needed).

Changed LICENSE install path to instdir/include/sundials.

1.1.10 Changes in v2.1.1

Fixed a potential memory leak in the SPGMR and SPFGMR linear solvers: if “Initialize” was called multiple times
then the solver memory was reallocated (without being freed).

Fixed a minor bug in the ARKRelnit routine, where a flag was incorrectly set to indicate that the problem had been
resized (instead of just re-initialized).

Fixed C++11 compiler errors/warnings about incompatible use of string literals.

Updated KLU SUNLinearSolver module to use a typedef for the precision-specific solve function to be used (to
avoid compiler warnings).

Added missing typecasts for some (voidx) pointers (again, to avoid compiler warnings).
Bugfix in sunmatrix_sparse.c where we had used int instead of sunindextype in one location.
Added missing #include <stdio.h>in NVECTOR and SUNMATRIX header files.

Added missing prototype for ARKSpilsGetNumMTSetups.

1.1. Changes from previous versions 11

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Fixed an indexing bug in the CUDA NVECTOR implementation of N_VWrmsNormMask and revised the RAJA
NVECTOR implementation of N_VWrmsNormMask to work with mask arrays using values other than zero or one.
Replaced double with realtype in the RAJA vector test functions.

Fixed compilation issue with GCC 7.3.0 and Fortran programs that do not require a SUNMatrix or SUNLinearSolver
module (e.g. iterative linear solvers, explicit methods, fixed point solver, etc.).

1.1.11 Changes in v2.1.0

Added NVECTOR print functions that write vector data to a specified file (e.g. N_VPrintFile_Serial).

Added make test and make test_install options to the build system for testing SUNDIALS after building
with make and installing with make install respectively.

1.1.12 Changes in v2.0.0

All interfaces to matrix structures and linear solvers have been reworked, and all example programs have been updated.
The goal of the redesign of these interfaces was to provide more encapsulation and ease in interfacing custom linear
solvers and interoperability with linear solver libraries.

Specific changes include:

¢ Added generic SUNMATRIX module with three provided implementations: dense, banded and sparse. These
replicate previous SUNDIALS DlIs and Sls matrix structures in a single object-oriented APL

* Added example problems demonstrating use of generic SUNMATRIX modules.

* Added generic SUNLINEARSOLVER module with eleven provided implementations: dense, banded, LAPACK
dense, LAPACK band, KLU, SuperLU_MT, SPGMR, SPBCGS, SPTFQMR, SPFGMR, PCG. These replicate
previous SUNDIALS generic linear solvers in a single object-oriented API.

* Added example problems demonstrating use of generic SUNLINEARSOLVER modules.

» Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iterative linear
solver (Spils) interfaces to utilize generic SUNMATRIX and SUNLINEARSOLVER objects.

* Removed package-specific, linear solver-specific, solver modules (e.g. CVDENSE, KINBAND, IDAKLU,
ARKSPGMR) since their functionality is entirely replicated by the generic Dls/Spils interfaces and SUNLIN-
EARSOLVER/SUNMATRIX modules. The exception is CVDIAG, a diagonal approximate Jacobian solver
available to CVODE and CVODES.

¢ Converted all SUNDIALS example problems to utilize new generic SUNMATRIX and SUNLINEARSOLVER
objects, along with updated Dls and Spils linear solver interfaces.

* Added Spils interface routines to ARKode, CVODE, CVODES, IDA and IDAS to allow specification of a user-
provided “JTSetup” routine. This change supports users who wish to set up data structures for the user-provided
Jacobian-times-vector (“JTimes”) routine, and where the cost of one JTSetup setup per Newton iteration can be
amortized between multiple JTimes calls.

Two additional NVECTOR implementations were added — one for CUDA and one for RAJA vectors. These vectors
are supplied to provide very basic support for running on GPU architectures. Users are advised that these vectors both
move all data to the GPU device upon construction, and speedup will only be realized if the user also conducts the
right-hand-side function evaluation on the device. In addition, these vectors assume the problem fits on one GPU.
Further information about RAJA, users are referred to the web site, https://software.llnl.gov/RAJA/. These additions
are accompanied by additions to various interface functions and to user documentation.

All indices for data structures were updated to a new sunindextype that can be configured to be a 32- or 64-bit
integer data index type. sunindextype is defined to be int32_t or int 64_t when portable types are supported,
otherwise it is defined as int or long int. The Fortran interfaces continue to use 1ong int for indices, except

12 Chapter 1. Introduction

https://software.llnl.gov/RAJA/

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

for their sparse matrix interface that now uses the new sunindextype. This new flexible capability for index types
includes interfaces to PETSc, hypre, SuperLU_MT, and KLU with either 32-bit or 64-bit capabilities depending how
the user configures SUNDIALS.

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE have been
changed to SUNTRUE and SUNFALSE respectively.

Temporary vectors were removed from preconditioner setup and solve routines for all packages. It is assumed that all
necessary data for user-provided preconditioner operations will be allocated and stored in user-provided data struc-
tures.

The file include/sundials_fconfig.h was added. This file contains SUNDIALS type information for use in
Fortran programs.

Added functions SUNDIALSGetVersion and SUNDIALSGetVersionNumber to get SUNDIALS release version in-
formation at runtime.

The build system was expanded to support many of the xSDK-compliant keys. The xSDK is a movement in scientific
software to provide a foundation for the rapid and efficient production of high-quality, sustainable extreme-scale
scientific applications. More information can be found at, https://xsdk.info.

In addition, numerous changes were made to the build system. These include the addition of separate BLAS_ENABLE
and BLAS_LIBRARIES CMake variables, additional error checking during CMake configuration, minor bug fixes,
and renaming CMake options to enable/disable examples for greater clarity and an added option to enable/disable
Fortran 77 examples. These changes included changing ENABLE_EXAMPLES to ENABLE_EXAMPLES_ C, changing
CXX_ENABLE to EXAMPLES_ENABLE_CXX, changing F90_ENABLE to EXAMPLES_ENABLE_F 90, and adding
an EXAMPLES_ENABLE_F 77 option.

Corrections and additions were made to the examples, to installation-related files, and to the user documentation.

1.1.13 Changes in v1.1.0

We have included numerous bugfixes and enhancements since the v1.0.2 release.
The bugfixes include:

* For each linear solver, the various solver performance counters are now initialized to 0 in both the solver speci-
fication function and in the solver’s 1init function. This ensures that these solver counters are initialized upon
linear solver instantiation as well as at the beginning of the problem solution.

e The choice of the method vs embedding the Billington and TRBDF2 explicit Runge-Kutta methods were
swapped, since in those the lower-order coefficients result in an A-stable method, while the higher-order co-
efficients do not. This change results in significantly improved robustness when using those methods.

* A bug was fixed for the situation where a user supplies a vector of absolute tolerances, and also uses the vector
Resize() functionality.

* A bug was fixed wherein a user-supplied Butcher table without an embedding is supplied, and the user is running
with either fixed time steps (or they do adaptivity manually); previously this had resulted in an error since the
embedding order was below 1.

* Numerous aspects of the documentation were fixed and/or clarified.
The feature changes/enhancements include:

* Two additional NVECTOR implementations were added — one for Hypre (parallel) ParVector vectors, and one
for PETSc vectors. These additions are accompanied by additions to various interface functions and to user
documentation.

¢ Each NVECTOR module now includes a function, N_VGetVectorID, that returns the NVECTOR module
name.

1.1. Changes from previous versions 13

https://xsdk.info

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

1.2

A memory leak was fixed in the banded preconditioner and banded-block-diagonal preconditioner interfaces. In
addition, updates were done to return integers from linear solver and preconditioner ‘free’ routines.

The Krylov linear solver Bi-CGstab was enhanced by removing a redundant dot product. Various additions and
corrections were made to the interfaces to the sparse solvers KLU and SuperLU_MT, including support for CSR
format when using KLU.

The ARKode implicit predictor algorithms were updated: methods 2 and 3 were improved slightly, a new
predictor approach was added, and the default choice was modified.

The underlying sparse matrix structure was enhanced to allow both CSR and CSC matrices, with CSR supported
by the KLU linear solver interface. ARKode interfaces to the KLU solver from both C and Fortran were updated
to enable selection of sparse matrix type, and a Fortran-90 CSR example program was added.

The missing ARKSpilsGetNumMtimesEvals () function was added — this had been included in the previ-
ous documentation but had not been implemented.

The handling of integer codes for specifying built-in ARKode Butcher tables was enhanced. While a global
numbering system is still used, methods now have #defined names to simplify the user interface and to streamline
incorporation of new Butcher tables into ARKode.

The maximum number of Butcher table stages was increased from 8 to 15 to accommodate very high order
methods, and an 8th-order adaptive ERK method was added.

Support was added for the explicit and implicit methods in an additive Runge-Kutta method to utilize different
stage times, solution and embedding coefficients, to support new SSP-ARK methods.

The FARKODE interface was extended to include a routine to set scalar/array-valued residual tolerances, to
support Fortran applications with non-identity mass-matrices.

Reading this User Guide

This user guide is a combination of general usage instructions and specific example programs. We expect that some
readers will want to concentrate on the general instructions, while others will refer mostly to the examples, and the
organization is intended to accommodate both styles.

The structure of this document is as follows:

In the next section we provide a thorough presentation of the underlying mathematics used within the ARKode
family of solvers.

We follow this with an overview of how the source code for ARKode is organized.

The largest section follows, providing a full account of the ARKStep module user interface, including a descrip-
tion of all user-accessible functions and outlines for usage in serial and parallel applications. Since ARKode is
written in C, we first present a section on using ARKStep for C and C++ applications, followed with a separate
section on using ARKode within Fortran applications.

The much smaller section describing the ERKStep time-stepping module, using ERKStep for C and C++ appli-
cations, follows.

Subsequent sections discuss shared features between ARKode and the rest of the SUNDIALS library: vector
data structures, matrix data structures, linear solver data structures, and the installation procedure.

The final sections catalog the full set of ARKode constants, that are used for both input specifications and return
codes, and the full set of Butcher tables that are packaged with ARKode.

14

Chapter 1. Introduction

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

1.3 SUNDIALS Release License

All SUNDIALS packages are released open source, under the BSD 3-Clause license. The only requirements of the
license are preservation of copyright and a standard disclaimer of liability. The full text of the license and an additional
notice are provided below and may also be found in the LICENSE and NOTICE files provided with all SUNDIALS
packages.

PLEASE NOTE If you are using SUNDIALS with any third party libraries linked in (e.g., LAPACK, KLU, Su-
perLU_MT, PETSc, or hypre), be sure to review the respective license of the package as that license may have more
restrictive terms than the SUNDIALS license. For example, if someone builds SUNDIALS with a statically linked
KLU, the build is subject to terms of the more-restrictive LGPL license (which is what KLU is released with) and not
the SUNDIALS BSD license anymore.

1.3.1 BSD 3-Clause License

Copyright (c) 2002-2019, Lawrence Livermore National Security and Southern Methodist University.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

 Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDI-
RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

1.3.2 Additional Notice

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or Lawrence Livermore National Security, LLC.

1.3. SUNDIALS Release License 15

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Gov-
ernment or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement
purposes.

1.3.3 SUNDIALS Release Numbers

LLNL-CODE-667205 (ARKODE)
UCRL-CODE-155951 (CVODE)
UCRL-CODE-155950 (CVODES)
UCRL-CODE-155952 (IDA)
UCRL-CODE-237203 (IDAS)
LLNL-CODE-665877 (KINSOL)

16 Chapter 1. Introduction

CHAPTER
TWO

MATHEMATICAL CONSIDERATIONS

ARKode solves ODE initial value problems (IVP) in RY posed in linearly-implicit form,

My = f(t,y), y(to) = Yo 2.1

Here, ¢ is the independent variable (e.g. time), and the dependent variables are given by y € R, where we use the
notation g to denote %.

M is a user-specified nonsingular operator from R — R . This operator is currently assumed to be independent
of both ¢ and y. For standard systems of ordinary differential equations and for problems arising from the spatial
semi-discretization of partial differential equations using finite difference, finite volume, or spectral finite element
methods, M is typically the identity matrix, /. For PDEs using standard finite-element spatial semi-discretizations,
M is typically a well-conditioned mass matrix that is fixed throughout a simulation (except in the case of a spatially-
adaptive method, where M can change between, but not within, time steps).

The ODE right-hand side is given by the function f (¢, y), i.e. in general we make no assumption that the problem (2.1)
is autonomous (f = f(y)). In general, the time integration methods within ARKode support additive splittings of this
right-hand side function, as described in the subsections that follow. Through these splittings, the time-stepping meth-
ods currently supplied with ARKode are designed to solve stiff, nonstiff, or mixed stiff/nonstiff problems. Roughly
speaking, stiffness is characterized by the presence of at least one rapidly damped mode, whose time constant is small
compared to the time scale of the solution itself.

In the sub-sections that follow, we elaborate on the numerical methods utilized in ARKode. We first discuss the “single-
step” nature of the ARKode infrastructure, including its usage modes and approaches for interpolated solution output.
We then discuss the current suite of time-stepping modules supplied with ARKode, including the ARKStep module
for additive Runge-Kutta methods, the ERKStep module that is optimized for explicit Runge-Kutta methods, and the
MRIStep module for rwo-rate explicit-explicit multirate infinitesimal step methods. We then discuss the adaptive
temporal error controllers shared by the time-stepping modules, including discussion of our choice of norms for
measuring errors within various components of the solver.

We then discuss the nonlinear and linear solver strategies used by ARKode’s time-stepping modules for solving im-
plicit algebraic systems that arise in computing each stage and/or step: nonlinear solvers, linear solvers, precondi-
tioners, error control within iterative nonlinear and linear solvers, algorithms for initial predictors for implicit stage
solutions, and approaches for handling non-identity mass-matrices.

We conclude with a section describing ARKode’s rootfinding capabilities, that may be used to stop integration of a
problem prematurely based on traversal of roots in user-specified functions.

2.1 Adaptive single-step methods

The ARKode infrastructure is designed to support single-step, IVP integration methods, i.e.

Yn = <P(yn71, hn)

17

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

where y,,_1 is an approximation to the solution y(¢,—1), ¥, is an approximation to the solution y(t,), t,, = t,,—1+hy,
and the approximation method is represented by the function .

The choice of step size h,, is determined by the time-stepping method (based on user-provided inputs, typically accu-
racy requirements). However, users may place minimum/maximum bounds on h,, if desired.

ARKode’s time stepping modules may be run in a variety of “modes”:

* NORMAL - The solver will take internal steps until it has just overtaken a user-specified output time, %y, in
the direction of integration, i.e. t,—1 < touw < t, for forward integration, or ¢, < ton < t,—1 for backward
integration. It will then compute an approximation to the solution y(¢.y) by interpolation (using one of the
dense output routines described in the section Interpolation).

* ONE-STEP - The solver will only take a single internal step y,_1 — ¥, and then return control back to the
calling program. If this step will overtake ¢, then the solver will again return an interpolated result; otherwise
it will return a copy of the internal solution y,,.

¢ NORMAL-TSTOP - The solver will take internal steps until the next step will overtake ¢q. It will then limit
this next step so that t,, = ¢,_1 + h,, = tou, and once the step completes it will return a copy of the internal
solution ¥,,.

¢ ONE-STEP-TSTOP - The solver will check whether the next step will overtake ¢, — if not then this mode is
identical to “one-step” above; otherwise it will limit this next step so that t,, = t,,_1 + h,, = toy. In either case,
once the step completes it will return a copy of the internal solution y,,.

We note that interpolated solutions may be slightly less accurate than the internal solutions produced by the solver.
Hence, to ensure that the returned value has full method accuracy one of the “tstop” modes may be used.

2.2 Interpolation

As mentioned above, the time-stepping modules in ARKode support interpolation of solutions y(tou) Where ¢4, occurs
within a completed time step from ¢,,_1 — t,. Additionally, this module supports extrapolation of solutions to ¢
outside this interval (e.g. to construct predictors for iterative nonlinear and linear solvers). To this end, ARKode
currently supports construction of polynomial interpolants p,(t) of polynomial order up to ¢ = 5, although this
polynomial order may be adjusted by the user.

These interpolants are either of Lagrange or Hermite form, and use the data {y,—1, fn—1,Yn, fn}, Where here we
use the simplified notation fy to denote f(tx,yx). Defining a normalized “time” variable, 7, for the most-recently-
computed solution interval £,,_1 — ¢, as

t—tn—
T(t) = T:la
we then construct the interpolants p,(t) as follows:
e ¢ = 0: constant interpolant
po(r) = It

e ¢ = 1: linear Lagrange interpolant
pi(T) = —TYn—1+ (L +7) Yn.
* ¢ = 2: quadratic Hermite interpolant

pQ(T) =7’ Yn—1 + (1 - Tz)yn + h(T + 7-2) fn

18 Chapter 2. Mathematical Considerations

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

* g = 3: cubic Hermite interpolant

p3(7) = (372 + 27 Y1+ (1 = 372 = 273y + W(72 +73) froo1 + h(T + 272 + 73) fo.

‘We note that although interpolants of order > 5 are possible, these are not currently implemented due to their increased
computing and storage costs. However, these may be added in future releases.

2.3 ARKStep — Additive Runge-Kutta methods

The ARKStep time-stepping module in ARKode is designed for IVPs of the form

My = fE(ty) + f(ty), o) =y, 22)
i.e. the right-hand side function is additively split into two components:
* fE(t,y) contains the “nonstiff” components of the system. This will be integrated using an explicit method.
* fI(t,y) contains the “stiff” components of the system. This will be integrated using an implicit method.

In solving the IVP (2.2), ARKStep utilizes variable-step, embedded, additive Runge-Kutta methods (ARK), corre-
sponding to algorithms of the form

i—1 %
Mz; = Myn—1+ hy, ZAfjfE(tf,guzj) + hy, ZA'{,ij(t'{L,jvzj)a i=1,...,s,
J=1

j=1

Myy = Myn_1+hn Y (b7 FPE 1 20) + 0] 1 (8, 1. 20)) (2.3)
=1

M = My + b > (B FP (2 20) + B f (8 10 20))
=1

Here §,, are embedded solutions that approximate y(¢,,) that are used for error estimation; these typically have slightly
lower accuracy than the computed solutions y,,. The internal stage times are abbreviated using the notation t,EL, =
th_1+ cf h,, and tfl’ ;= tp—1+ CJI- h,. The ARK method is primarily defined through the coefficients AF ¢ Rs*s,
Al e R9%s bF € R*, b € R*, ¢ € R® and ¢! € R?, that correspond with the explicit and implicit Butcher tables.
Additional coefficients b € R* and b’ € R* are used to construct the embedding y,,. We note that ARKStep currently
enforces the constraint that the explicit and implicit methods in an ARK pair must share the same number of stages, s;
however it allows the possibility for different explicit and implicit stage times, i.e. ¢ need not equal ¢’.

The user of ARKStep must choose appropriately between one of three classes of methods: ImEx, explicit, and implicit.
All of ARKode’s available Butcher tables encoding the coefficients ¢, ¢!, A¥, A, b, b!, b and b’ are further
described in the Appendix: Butcher tables.

For mixed stiff/nonstiff problems, a user should provide both of the functions f¥ and f! that define the IVP system.
For such problems, ARKStep currently implements the ARK methods proposed in /[KC2003], allowing for methods
having order of accuracy ¢ = {3, 4, 5}; the tables for these methods are given in the section Additive Butcher tables.
Additionally, user-defined ARK tables are supported.

For nonstiff problems, a user may specify that f/ = 0, i.e. the equation (2.2) reduces to the non-split IVP
My=fE(ty), ylto) =y 2.4)

In this scenario, the coefficients AT = 0, ¢! = 0, b/ = 0and b’ = 0 in (2.3), and the ARK methods reduce to classical
explicit Runge-Kutta methods (ERK). For these classes of methods, ARKode provides coefficients with orders of ac-
curacy ¢ = {2, 3,4, 5, 6,8}, with embeddings of orders p = {1,2,3,4,5,7}. These default to the Heun-Euler-2-1-2,

2.3. ARKStep — Additive Runge-Kutta methods 19

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Bogacki-Shampine-4-2-3, Zonneveld-5-3-4, Cash-Karp-6-4-5, Verner-8-5-6 and Fehlberg-13-7-8 methods, respec-
tively. As with ARK methods, user-defined ERK tables are supported.

Finally, for stiff problems the user may specify that f¥ = 0, so the equation (2.2) reduces to the non-split IVP
My=f(ty), ylto) =y 2.5)

Similarly to ERK methods, in this scenario the coefficients AE =0,c¢F =0,bF =0and bE = 0in (2.3), and the ARK
methods reduce to classical diagonally-implicit Runge-Kutta methods (DIRK). For these classes of methods, ARKode
provides tables with orders of accuracy ¢ = {2, 3,4, 5}, with embeddings of orders p = {1, 2, 3,4}. These default to
the SDIRK-2-1-2, ARK-4-2-3 (implicit), SDIRK-5-3-4 and ARK-8-4-5 (implicit) methods, respectively. Again, user-
defined DIRK tables are supported.

2.4 ERKStep — Explicit Runge-Kutta methods

The ERKStep time-stepping module in ARKode is designed for IVP of the form

v = f(t,y), y(to) = vo- (2.6)

For such problems, ERKStep provides variable-step, embedded, explicit Runge-Kutta methods (ERK), corresponding
to algorithms of the form

i—1

% =Ynathn Y Aijf(tng,2), i=1,....5,

Jj=1

Yn = Yn—1 + hn Z bif(tn,ia Zi)7 (27)

=1

gn = Yn—1 + hn Z E’Lf(t’ﬂﬂ’ Zi>7
=1

where the variables have the same meanings as in the previous section. We note that the problem (2.6) is fully
encapsulated in the more general problems (2.4), and that the algorithm (2.7) is similarly encapsulated in the more
general algorithm (2.3). While it therefore follows that ARKStep can be used to solve every problem solvable by
ERKStep, using the same set of methods, we include ERKStep as a distinct time-stepping module since this simplified
form admits a more efficient and memory-friendly solution process than when considering the more general form.

2.5 MRIStep — Multirate infinitesimal step methods

The MRIStep time-stepping module in ARKode is designed for IVPs of the form

g=rty) + 1 (6y), yte) = wo. 2.8)
i.e. the right-hand side function is additively split into two components:
s f5(t,y) contains the “slow” components of the system. This will be integrated using a large time step h°.
* fF(t,y) contains the “fast” components of the system. This will be integrated using a small time step h¥".

For such problems, MRIStep provides fixed-step slow step multirate infinitesimal step methods (see [SKAW2009],
[SKAW2012a], and [SKAW2012b]) that combine two Runge-Kutta methods. The outer (slow) method is an s stage
explicit Runge-Kutta method where the stage values and the new solution are computed by solving an auxiliary ODE
with an inner (fast) Runge-Kutta method. This corresponds to the following algorithm for a single step:

1. Setz; = Yn—1

20 Chapter 2. Mathematical Considerations

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

2. Fori=2,...,s+1

(@) Letv(th ;1) = zi1
(b) Compute 7 = _s—1s— Y277 (A7, — A%,) f5(85 5.2)

(c) ForT e [td . | t5.],solve o(7) = fF(m,v) +r

n,i—17“n,i
(d) Set z; = v(ty),
3. Sety, = Zs+1,»

where ¢, ;

The MRIStep module provides a third order explicit outer method (Knoth-Wolke-3-3). The inner ODE is solved using
the ARKStep module. As such can the inner methods can be an explicit, implicit, or IMEX method.

= tn—l + C]Shs and ASS+1’J- = bJS

User-defined outer and inner methods are also supported. A user defined method will be first to third order accurate
depending on the slow and fast tables provided. If both the slow and fast tables are second order, then the overall
method will also be second order. If the slow and fast tables are both third order and the slow method satisfies an
auxiliary condition (see [SKAW2012a]), then the overall method will also be third order.

Note that at this time the MRIStep module only supports explicit outer tables where the stage times are unique and
ordered (i.e., ¢ > ¢ ;) and the final stage time is less than 1.

2.6 Error norms

In the process of controlling errors at various levels (time integration, nonlinear solution, linear solution), the methods
in ARKode use a weighted root-mean-square norm, denoted || - ||wrwms, for all error-like quantities,

N

1/2
1
[v]lwrms = <N > (v wi)2>) (2.9)

i=1

The utility of this norm arises in the specification of the weighting vector w, that combines the units of the problem
with user-supplied values that specify an “acceptable” level of error. To this end, we construct an error weight vector
using the most-recent step solution and user-supplied relative and absolute tolerances, namely

1
- RTOL- ‘yn—l,i| + ATOL;)

wj

(2.10)

Since 1/w; represents a tolerance in the i-th component of the solution vector y, a vector whose WRMS norm is 1
is regarded as “small.” For brevity, unless specified otherwise we will drop the subscript WRMS on norms in the
remainder of this section.

Additionally, for problems involving a non-identity mass matrix, M # I, the units of equation (2.2) may differ from
the units of the solution y. In this case, we may additionally construct a residual weight vector,

1
" RTOL-|[My, 1], |+ ATOL}’

w; (2.11)
where the user may specify a separate absolute residual tolerance value or array, ATOL’. The choice of weighting
vector used in any given norm is determined by the quantity being measured: values having “solution” units use (2.10),
whereas values having “equation” units use (2.11). Obviously, for problems with M = I, the solution and equation
units are identical, so the solvers in ARKode will use (2.10) when computing all error norms.

2.6. Error norms 21

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

2.7 Time step adaptivity

A critical component of IVP “solvers” (rather than just time-steppers) is their adaptive control of local truncation error
(LTE). At every step, we estimate the local error, and ensure that it satisfies tolerance conditions. If this local error test
fails, then the step is recomputed with a reduced step size. To this end, the Runge-Kutta methods packaged within both
the ARKStep and ERKStep modules admit an embedded solution ¥,,, as shown in equations (2.3) and (2.7). Generally,
these embedded solutions attain a slightly lower order of accuracy than the computed solution y,,. Denoting the order
of accuracy for y,, as q and for y,, as p, most of these embedded methods satisfy p = ¢ — 1. These values of ¢ and p
correspond to the global orders of accuracy for the method and embedding, hence each admit local truncation errors
satisfying [HW1993]

lyn = y(ta)ll = CHET + O(RET),

s 2.12)
[Gn — y(tn)|| = DRETT + O(RET?),

where C' and D are constants independent of h,,, and where we have assumed exact initial conditions for the step, i.e.
Yn—1 = Y(t,—1). Combining these estimates, we have

lYn — nll = lyn — y(tn) = Gn + @)l < llyn — y@E) | + |90 — y(ta)ll < Dhﬁ—'—l + O(hﬁ-ﬂ).

We therefore use the norm of the difference between y,, and ,, as an estimate for the LTE at the step n
S
MT, = B (yn = G) = Bl > [(0F = BF) f2(tE 1 20) + (b = b1) £ (10 20)] 2.13)
i=1

for ARK methods, and similarly for ERK methods. Here, 5 > 0 is an error bias to help account for the error constant
D; the default value of this constant is § = 1.5, which may be modified by the user.

With this LTE estimate, the local error test is simply ||7},|| < 1 since this norm includes the user-specified tolerances.
If this error test passes, the step is considered successful, and the estimate is subsequently used to estimate the next
step size, the algorithms used for this purpose are described below in the section Asymptotic error control. If the error
test fails, the step is rejected and a new step size h' is then computed using the same error controller as for successful
steps. A new attempt at the step is made, and the error test is repeated. If the error test fails twice, then h’/h is limited
above to 0.3, and limited below to 0.1 after an additional step failure. After seven error test failures, control is returned
to the user with a failure message. We note that all of the constants listed above are only the default values; each may
be modified by the user.

We define the step size ratio between a prospective step k' and a completed step h as 7, i.e. 7 = h’/h. This value is
subsequently bounded from above by 7.« to ensure that step size adjustments are not overly aggressive. This upper
bound changes according to the step and history,

etamxl1, on the first step (default is 10000),
Nmax = { growth, on general steps (default is 20),
1, if the previous step had an error test failure.

A flowchart detailing how the time steps are modified at each iteration to ensure solver convergence and successful
steps is given in the figure below. Here, all norms correspond to the WRMS norm, and the error adaptivity function
arkAdapt is supplied by one of the error control algorithms discussed in the subsections below.

For some problems it may be preferable to avoid small step size adjustments. This can be especially true for problems
that construct a Newton Jacobian matrix or a preconditioner for a nonlinear or an iterative linear solve, where this con-
struction is computationally expensive, and where convergence can be seriously hindered through use of an inaccurate
matrix. To accommodate these scenarios, the step is left unchanged when 1 € [, ny]. The default values for this
interval are n;, = 1 and ny = 1.5, and may be modified by the user.

We note that any choices for 7 (or equivalently, 4’) are subsequently constrained by the optional user-supplied bounds
Dmin and Aga. Additionally, the time-stepping algorithms in ARKode may similarly limit &’ to adhere to a user-
provided “TSTOP” stopping point, tsop.

22 Chapter 2. Mathematical Considerations

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

hO supplied?

yes \110

compute hO to
approximately solve

I1h0r2 y” 1< 2

e

if (nst==0): h =h0
else: h=h*ecta

i

attempt step

convergence failure?
no

1 = *
estimate error: h=h*eta

etamax = 1

ncf=nef + 1

if (h==hmin or ncf==maxncf): halt
eta = max(etact, hmin/h)

dsm = lly_errorll
Y- etamax = 1

nef = nef + 1
is dsm<1 ? no if (h==hmin or nef==maxnef): halt

eta = arkAdapt(h, h1, h2, dsm, el, e2)
if (nef >= small_nef): eta = max(eta, etamxf)
h=h*eta

yes

nst=nst+ 1
if (etamax==1): eta=1
eta = arkAdapt(h, hl, h2, dsm, el, e2)

— h2=hl
hl=h
e2=el

el =dsm * bias

2.7. Time step adaptivity 23

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

2.7.1 Asymptotic error control

As mentioned above, the time-stepping modules in ARKode adapt the step size in order to attain local errors within
desired tolerances of the true solution. These adaptivity algorithms estimate the prospective step size h’ based on the
asymptotic local error estimates (2.12). We define the values ¢,,, €,,—1 and €,,_2 as

er = [Tkl = Bllyr — ill,

corresponding to the local error estimates for three consecutive steps, t,,—3 — t,_2 — t,—1 — t,. These local
error history values are all initialized to 1 upon program initialization, to accommodate the few initial time steps of a
calculation where some of these error estimates have not yet been computed. With these estimates, ARKode supports
a variety of error control algorithms, as specified in the subsections below.

PID controller

This is the default time adaptivity controller used by the ARKStep and ERKStep modules. It derives from those found
in [KC2003], [S1998], [S2003] and [S2006], and uses all three of the local error estimates ¢,,, €,_1 and £,,_o in
determination of a prospective step size,

r_ —k1/p k2/p _—ks/p
h' = hy e, Enll Epg ',

where the constants &y, ko and ks default to 0.58, 0.21 and 0.1, respectively, and may be modied by the user. In this
estimate, a floor of ¢ > 1071 is enforced to avoid division-by-zero errors.

Pl controller

Like with the previous method, the PI controller derives from those found in /KC2003], [S1998], [S2003] and [S2006],
but it differs in that it only uses the two most recent step sizes in its adaptivity algorithm,

r —ki/p _k2/p
h' = hye, 1/ Ept-

Here, the default values of k1 and ko default to 0.8 and 0.31, respectively, though they may be changed by the user.

| controller

This is the standard time adaptivity control algorithm in use by most publicly-available ODE solver codes. It bases the
prospective time step estimate entirely off of the current local error estimate,

W = hyet/P.

By default, k; = 1, but that may be modified by the user.

Explicit Gustafsson controller

This step adaptivity algorithm was proposed in /G/991], and is primarily useful with explicit Runge-Kutta methods.
In the notation of our earlier controllers, it has the form

(2.14)

;) 51_1/p, on the first step,
W= —k1/p ka/p
hp €n (en/en-1) , on subsequent steps.

The default values of k1 and k9 are 0.367 and 0.268, respectively, and may be modified by the user.

24 Chapter 2. Mathematical Considerations

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Implicit Gustafsson controller

A version of the above controller suitable for implicit Runge-Kutta methods was introduced in [G/994], and has the
form

W {hlsll/p, on the first step, 2.15)

hy, (hn/hn,l)&:;kl/p (en/sn,1)7k2/p, on subsequent steps.

The algorithm parameters default to £; = 0.98 and ke = 0.95, but may be modified by the user.

ImEx Gustafsson controller

An ImEx version of these two preceding controllers is also available. This approach computes the estimates h/ arising
from equation (2.14) and the estimate h), arising from equation (2.15), and selects

h
h' = ——min {|R}], |ho[}.
A
Here, equation (2.14) uses k; and ko with default values of 0.367 and 0.268, while equation (2.15) sets both parameters
to the input k3 that defaults to 0.95. All of these values may be modified by the user.

User-supplied controller

Finally, ARKode’s time-stepping modules allow the user to define their own time step adaptivity function,
hl = H(ya tv hna hnfla hn72, EnsEn—1yEn—2, q;p)v

to allow for problem-specific choices, or for continued experimentation with temporal error controllers.

2.8 Explicit stability

For problems that involve a nonzero explicit component, i.e. f¥(t,3) # 0in ARKStep or for any problem in ERKStep,
explicit and ImEx Runge-Kutta methods may benefit from additional user-supplied information regarding the explicit
stability region. All ARKode adaptivity methods utilize estimates of the local error, and it is often the case that such
local error control will be sufficient for method stability, since unstable steps will typically exceed the error control
tolerances. However, for problems in which f¥(t,y) includes even moderately stiff components, and especially for
higher-order integration methods, it may occur that a significant number of attempted steps will exceed the error
tolerances. While these steps will automatically be recomputed, such trial-and-error can result in an unreasonable
number of failed steps, increasing the cost of the computation. In these scenarios, a stability-based time step controller
may also be useful.

Since the maximum stable explicit step for any method depends on the problem under consideration, in that the
value (h,A) must reside within a bounded stability region, where \ are the eigenvalues of the linearized operator
df¥ /0y, information on the maximum stable step size is not readily available to ARKode’s time-stepping modules.
However, for many problems such information may be easily obtained through analysis of the problem itself, e.g. in
an advection-diffusion calculation f/ may contain the stiff diffusive components and f¥ may contain the comparably
nonstiff advection terms. In this scenario, an explicitly stable step h.y, would be predicted as one satisfying the
Courant-Friedrichs-Lewy (CFL) stability condition for the advective portion of the problem,

Az
[hexp| < —
DY

where Az is the spatial mesh size and A is the fastest advective wave speed.

2.8. Explicit stability 25

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

In these scenarios, a user may supply a routine to predict this maximum explicitly stable step size, |heyp|. If a value
for |hexp| is supplied, it is compared against the value resulting from the local error controller, |hac|, and the eventual
time step used will be limited accordingly,

h .
W = g minfe gl [}

Here the explicit stability step factor ¢ > 0 (often called the “CFL number”) defaults to 1/2 but may be modified by
the user.

2.8.1 Fixed time stepping

While both the ARKStep and ERKStep time-stepping modules are designed for tolerance-based time step adaptivity,
they additionally support a “fixed-step” mode. This mode is typically used for debugging purposes, for verification
against hand-coded Runge-Kutta methods, or for problems where the time steps should be chosen based on other
problem-specific information. In this mode, all internal time step adaptivity is disabled:

* temporal error control is disabled,
* nonlinear or linear solver non-convergence will result in an error (instead of a step size adjustment),
* no check against an explicit stability condition is performed.

Additional information on this mode is provided in the sections ARKStep Optional Inputs and ERKStep Optional
Inputs.

2.9 Algebraic solvers

When solving a problem involving either a nonzero implicit component, f(¢,v) # 0, or a non-identity mass matrix,
M # I, systems of linear or nonlinear algebraic equations must be solved at each stage and/or step of the method.
This section therefore focuses on the variety of mathematical methods provided in the ARKode infrastructure for
such problems, including nonlinear solvers, linear solvers, preconditioners, iterative solver error control, implicit
predictors, and techniques used for simplifying the above solves when using non-time-dependent mass-matrices.

2.9.1 Nonlinear solver methods

For both the DIRK and ARK methods corresponding to (2.2) and (2.5), an implicit system

G(zi) = Mz — hy AL f1(th ;. 2) —ai =0 (2.16)

’I’LZ’

must be solved for each stage z;,7 = 1,...,s, where we have the data

i—1
i = [gnor + b Y [AEFEGE ;) + AL 5, 2))

for the ARK methods, or

1—1

ai = | Yn— 1+hnZA fltl,]v i)

Jj=1

for the DIRK methods. Here, if f(¢,y) depends nonlinearly on y then (2.16) corresponds to a nonlinear system of
equations; if f7(¢,y) depends linearly on y then this is a linear system of equations.

26 Chapter 2. Mathematical Considerations

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

For systems of either type, ARKode provides a choice of solution strategies. The default solver choice is a variant of
Newton’s method,

Z_(m+1) _ Zi(m) n 5(m+1)’ 2.17)

7

where m is the Newton iteration index, and the Newton update § (m+1) in turn requires the solution of the Newton
linear system

At 502 840 =~ (o), .18
in which
I
Alt,z) = M —~J(t,2), J(t,z)= W, and v =h,A!,. (2.19)
> :

When the problem involves an identity mass matrix, then as an alternative to Newton’s method, ARKode provides a
fixed point iteration for solving the stages z;,7 = 1,...,s,

A =@ (M) =M -6 (M), m=0,1,. (2.20)

This iteration may additionally be improved using a technique called “Anderson acceleration” [WN2011]. Unlike with
Newton’s method, these methods do not require the solution of a linear system at each iteration, instead opting for
solution of a low-dimensional least-squares solution to construct the nonlinear update.

Finally, if the user specifies that f!(¢,%) depends linearly on y, and if the Newton-based nonlinear solver is chosen,
then the problem (2.16) will be solved using only a single Newton iteration. In this case, an additional user-supplied
argument indicates whether this Jacobian is time-dependent or not, signaling whether the Jacobian or preconditioner
needs to be recomputed at each stage or time step, or if it can be reused throughout the full simulation.

The optimal choice of solver (Newton vs fixed-point) is highly problem dependent. Since fixed-point solvers do not
require the solution of any linear systems, each iteration may be significantly less costly than their Newton counter-
parts. However, this can come at the cost of slower convergence (or even divergence) in comparison with Newton-like
methods. On the other hand, these fixed-point solvers do allow for user specification of the Anderson-accelerated sub-
space size, my. While the required amount of solver memory for acceleration grows proportionately to my N, larger
values of mj may result in faster convergence. In our experience, this improvement is most significant for “small”
values, e.g. 1 < my, < 5, and that larger values of m, may not result in improved convergence.

While a Newton-based iteration is the default solver due to its increased robustness on very stiff problems, we strongly
recommend that users also consider the fixed-point solver when attempting a new problem.

For either the Newton or fixed-point solvers, it is well-known that both the efficiency and robustness of the algorithm
intimately depend on the choice of a good initial guess. The initial guess for these solvers is a prediction zfo) that is
computed explicitly from previously-computed data (e.g. ¥n—2, Yn—1, and z; where j < 7). Additional information
on the specific predictor algorithms is provided in the following section, /mplicit predictors.

2.9.2 Linear solver methods

When a Newton-based method is chosen for solving each nonlinear system, a linear system of equations must be
solved at each nonlinear iteration. For this solve ARKode provides several choices, including the option of a user-
supplied linear solver module. The linear solver modules distributed with SUNDIALS are organized into two families:
a direct family comprising direct linear solvers for dense, banded or sparse matrices, and a spils family comprising
scaled, preconditioned, iterative (Krylov) linear solvers. The methods offered through these modules are as follows:

* dense direct solvers, using either an internal SUNDIALS implementation or a BLAS/LAPACK implementation
(serial version only),

* band direct solvers, using either an internal SUNDIALS implementation or a BLAS/LAPACK implementation
(serial version only),

2.9. Algebraic solvers 27

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

* sparse direct solvers, using either the KLU sparse matrix library /[KLU], or the OpenMP or PThreads-enabled
SuperLU_MT sparse matrix library [SuperLUMT] [Note that users will need to download and install the KLU
or SuperLU_MT packages independent of ARKode],

* SPGMR, a scaled, preconditioned GMRES (Generalized Minimal Residual) solver,

* SPFGMR, a scaled, preconditioned FGMRES (Flexible Generalized Minimal Residual) solver,

* SPBCGS, a scaled, preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable) solver,

* SPTFQMR, a scaled, preconditioned TFQMR (Transpose-free Quasi-Minimal Residual) solver, or
* PCQG, a preconditioned CG (Conjugate Gradient method) solver for symmetric linear systems.

For large stiff systems where direct methods are often infeasible, the combination of an implicit integrator and a
preconditioned Krylov method can yield a powerful tool because it combines established methods for stiff integration,
nonlinear solver iteration, and Krylov (linear) iteration with a problem-specific treatment of the dominant sources of
stiffness, in the form of a user-supplied preconditioner matrix /BH7989]. We note that the direct linear solver modules
currently provided by SUNDIALS are only designed to be used with the serial and threaded vector representations.

Matrix-based linear solvers

In the case that a matrix-based linear solver is used, a modified Newton iteration is utilized. In a modified newton
iteration, the matrix .4 is held fixed for multiple Newton iterations. More precisely, each Newton iteration is computed
from the modified equation

A 2) 6 = _@ (z§m>) , 2.21)

in which

A(t,z) ~ M —~J(t,z), and 7 =hAl,. (2.22)

Here, the solution Z, time £, and step size h upon which the modified equation rely, are merely values of these quantities
from a previous iteration. In other words, the matrix A is only computed rarely, and reused for repeated solves. The
frequency at which A is recomputed defaults to 20 time steps, but may be modified by the user.

When using the dense and band SUNMatrix objects for the linear systems (2.21), the Jacobian J may be supplied
by a user routine, or approximated internally by finite-differences. In the case of differencing, we use the standard
approximation

Jij(t,z) = Jralt 2+ 05¢;) = Jralt, Z),

9j

where ¢; is the j-th unit vector, and the increments o; are given by
o
oj = rnaux{\/U|zj|7 0} .
. w;

Here U is the unit roundoff, og is a small dimensionless value, and w; is the error weight defined in (2.10). In the
dense case, this approach requires N evaluations of f T one for each column of J. In the band case, the columns of
J are computed in groups, using the Curtis-Powell-Reid algorithm, with the number of f! evaluations equal to the
matrix bandwidth.

We note that with sparse and user-supplied SUNMatrix objects, the Jacobian must be supplied by a user routine.

28 Chapter 2. Mathematical Considerations

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Matrix-free iterative linear solvers

In the case that a matrix-free iterative linear solver is chosen, an inexact Newton iteration is utilized. Here, the matrix
A is not itself constructed since the algorithms only require the product of this matrix with a given vector. Additionally,
each Newton system (2.18) is not solved completely, since these linear solvers are iterative (hence the “inexact” in the
name). As a result. for these linear solvers A is applied in a matrix-free manner,

A(t,z)v=Mv—~J(t, z)v.

The matrix-vector products Mv must be provided through a user-supplied routine; the matrix-vector products Jov
are obtained by either calling an optional user-supplied routine, or through a finite difference approximation to the
directional derivative:
I I
t,z+ov)— t,z
Jtsyen Iz o) = 1102)

g

where the increment o = 1/||v|| to ensure that ||ov|| = 1.

As with the modified Newton method that reused .A between solves, the inexact Newton iteration may also recompute
the preconditioner P infrequently to balance the high costs of matrix construction and factorization against the reduced
convergence rate that may result from a stale preconditioner.

Updating the linear solver

In cases where recomputation of the Newton matrix Aor preconditioner P is lagged, these structures will be recom-
puted only in the following circumstances:

* when starting the problem,

* when more than 20 steps have been taken since the last update (this value may be modified by the user),
 when the value 7 of v at the last update satisfies |y/4 — 1| > 0.2 (this value may be modified by the user),
* when a non-fatal convergence failure just occurred,

* when an error test failure just occurred, or

» if the problem is linearly implicit and ~y has changed by a factor larger than 100 times machine epsilon.

When an update is forced due to a convergence failure, an update of Aor P may or may not involve a re-evaluation of
J (in A) or of Jacobian data (in P), depending on whether errors in the Jacobian were the likely cause of the failure.
More generally, the decision is made to re-evaluate J (or instruct the user to update P) when:

* starting the problem,
* more than 50 steps have been taken since the last evaluation,

e a convergence failure occurred with an outdated matrix, and the value 7 of « at the last update satisfies
/A =11 > 02,

* a convergence failure occurred that forced a step size reduction, or
« if the problem is linearly implicit and -y has changed by a factor larger than 100 times machine epsilon.

However, for linear solvers and preconditioners that do not rely on costly matrix construction and factorization op-
erations (e.g. when using a geometric multigrid method as preconditioner), it may be more efficient to update these
structures more frequently than the above heuristics specify, since the increased rate of linear/nonlinear solver conver-
gence may more than account for the additional cost of Jacobian/preconditioner construction. To this end, a user may
specify that the system matrix .4 and/or preconditioner P should be recomputed more frequently.

As will be further discussed in the section Preconditioning, in the case of most Krylov methods, preconditioning may
be applied on the left, right, or on both sides of .4, with user-supplied routines for the preconditioner setup and solve
operations.

2.9. Algebraic solvers 29

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

2.9.3 lteration Error Control

Nonlinear iteration error control

The stopping test for all of the nonlinear solver algorithms is related to the temporal local error test, with the goal of

keeping the nonlinear iteration errors from interfering with local error control. Denoting the final computed value of
(m)

each stage solution as z; , and the true stage solution solving (2.16) as z;, we want to ensure that the iteration error

. Z(m)

, 1s “small” (recall that a norm less than 1 is already considered within an acceptable tolerance).

Zi

To this end, we first estimate the linear convergence rate R; of the nonlinear iteration. We initialize R; = 1, and reset
it to this value whenever A or P are updated. After computing a nonlinear correction §(™) = zZ(m) — zgm_l), ifm >0
we update R; as

R; + max{0.3R;,

s rfoelp

where the factor 0.3 is user-modifiable.

Let y,(Lm) denote the time-evolved solution constructed using our approximate nonlinear stage solutions, 2™

i

, and let

y,(f") denote the time-evolved solution constructed using exact nonlinear stage solutions. We then use the estimate

yy(Loo) _ y’gm) A max Hz(”ﬁ”l) _ Zl(m)H ~ max R; .
i i

K2

Therefore our convergence (stopping) test for the nonlinear iteration for each stage is
R H5<m>H <e (2.23)

where the factor € has default value 0.1. We default to a maximum of 3 nonlinear iterations. We also declare the
nonlinear iteration to be divergent if any of the ratios ||§(™)||/||§(™=1)|| > 2.3 with m > 0. If convergence fails in
the fixed point iteration, or in the Newton iteration with J or A current, we reduce the step size h,, by a factor of
0.25. The integration will be halted after 10 convergence failures, or if a convergence failure occurs with h,, = hpip.
However, since the nonlinearity of (2.16) may vary significantly based on the problem under consideration, these
default constants may all be modified by the user.

Linear iteration error control

When a Krylov method is used to solve the linear Newton systems (2.18), its errors must also be controlled. To this
end, we approximate the linear iteration error in the solution vector §™) using the preconditioned residual vector, e.g.
r = PAS"™ + PG for the case of left preconditioning (the role of the preconditioner is further elaborated in the next
section). In an attempt to ensure that the linear iteration errors do not interfere with the nonlinear solution error and
local time integration error controls, we require that the norm of the preconditioned linear residual satisfies

€[€

< £

(2.24)
Here € is the same value as that is used above for the nonlinear error control. The factor of 10 is used to ensure that the
linear solver error does not adversely affect the nonlinear solver convergence. Smaller values for the parameter €;, are
typically useful for strongly nonlinear or very stiff ODE systems, while easier ODE systems may benefit from a value
closer to 1. The default value is ez, = 0.05, which may be modified by the user. We note that for linearly implicit
problems the tolerance (2.24) is similarly used for the single Newton iteration.

2.9.4 Preconditioning

When using an inexact Newton method to solve the nonlinear system (2.16), an iterative method is used repeatedly
to solve linear systems of the form Ax = b, where x is a correction vector and b is a residual vector. If this iterative

30 Chapter 2. Mathematical Considerations

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

method is one of the scaled preconditioned iterative linear solvers supplied with SUNDIALS, their efficiency may
benefit tremendously from preconditioning. A system Az = b can be preconditioned using any one of:

(P Az =P [left preconditioning],
(AP YPz =1 [right preconditioning],
(P, ' AP)Praz = P; b [left and right preconditioning].

These Krylov iterative methods are then applied to a system with the matrix P~* A, AP, or P, L AP, instead of
A. In order to improve the convergence of the Krylov iteration, the preconditioner matrix P, or the product Py, Pg in
the third case, should in some sense approximate the system matrix .A. Simultaneously, in order to be cost-effective
the matrix P (or matrices P, and Pg) should be reasonably efficient to evaluate and solve. Finding an optimal point
in this trade-off between rapid convergence and low cost can be quite challenging. Good choices are often problem-
dependent (for example, see [BH1989] for an extensive study of preconditioners for reaction-transport systems).

Most of the iterative linear solvers supplied with SUNDIALS allow for all three types of preconditioning (left, right
or both), although for non-symmetric matrices .A we know of few situations where preconditioning on both sides is
superior to preconditioning on one side only (with the product P = P;, Pr). Moreover, for a given preconditioner
matrix, the merits of left vs. right preconditioning are unclear in general, so we recommend that the user experiment
with both choices. Performance can differ between these since the inverse of the left preconditioner is included in the
linear system residual whose norm is being tested in the Krylov algorithm. As a rule, however, if the preconditioner
is the product of two matrices, we recommend that preconditioning be done either on the left only or the right only,
rather than using one factor on each side. An exception to this rule is the PCG solver, that itself assumes a symmetric
matrix A, since the PCG algorithm in fact applies the single preconditioner matrix P in both left/right fashion as
P_I/QAP_1/2.

Typical preconditioners are based on approximations to the system Jacobian, .J = 9! /dy. Since the Newton iteration
matrix involved is A = M — ~y.J, any approximation .J to .J yields a matrix that is of potential use as a preconditioner,
namely P = M — ~.J. Because the Krylov iteration occurs within a Newton iteration and further also within a time
integration, and since each of these iterations has its own test for convergence, the preconditioner may use a very
crude approximation, as long as it captures the dominant numerical features of the system. We have found that the
combination of a preconditioner with the Newton-Krylov iteration, using even a relatively poor approximation to the
Jacobian, can be surprisingly superior to using the same matrix without Krylov acceleration (i.e., a modified Newton
iteration), as well as to using the Newton-Krylov method with no preconditioning.

2.9.5 Implicit predictors

For problems with implicit components, a prediction algorithm is employed for constructing the initial guesses for
each implicit Runge-Kutta stage, zi(o). As is well-known with nonlinear solvers, the selection of a good initial guess
can have dramatic effects on both the speed and robustness of the solve, making the difference between rapid quadratic
convergence versus divergence of the iteration. To this end, a variety of prediction algorithms are provided. In each
case, the stage guesses zgo) are constructed explicitly using readily-available information, including the previous step
solutions y,_1 and y,,_o, as well as any previous stage solutions z;, j < 4. In most cases, prediction is performed
by constructing an interpolating polynomial through existing data, which is then evaluated at the desired stage time to
provide an inexpensive but (hopefully) reasonable prediction of the stage solution. Specifically, for most Runge-Kutta
methods each stage solution satisfies

2 = y(t’{L,i)’

so by constructing an interpolating polynomial p,(t) through a set of existing data, the initial guess at stage solutions
may be approximated as

20 = py(th). (2.25)

As the stage times for implicit ARK and DIRK stages usually satisfy c§ > 0, it is typically the case that tfh ; is outside

of the time interval containing the data used to construct p,(t), hence (2.25) will correspond to an extrapolant instead

2.9. Algebraic solvers 31

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

of an interpolant. The dangers of using a polynomial interpolant to extrapolate values outside the interpolation interval
are well-known, with higher-order polynomials and predictions further outside the interval resulting in the greatest
potential inaccuracies.

The prediction algorithms available in ARKode therefore construct a variety of interpolants p,(t), having different
polynomial order and using different interpolation data, to support ‘optimal’ choices for different types of problems,
as described below.

Trivial predictor

The so-called “trivial predictor” is given by the formula

Po(t) = Yn—1.

While this piecewise-constant interpolant is clearly not a highly accurate candidate for problems with time-varying
solutions, it is often the most robust approach for highly stiff problems, or for problems with implicit constraints whose
violation may cause illegal solution values (e.g. a negative density or temperature).

Maximum order predictor

At the opposite end of the spectrum, ARKode’s interpolation module can be used to construct a higher-order polyno-
mial interpolant, p,(t), based on the two most-recently-computed solutions, {yn—2, fn—2,Yn—1, fn—1}. This can then
be used to extrapolate predicted stage solutions for each stage time tél This polynomial order is the same as that
specified by the user for dense output.

Variable order predictor

This predictor attempts to use higher-order polynomials p, () for predicting earlier stages, and lower-order interpolants
for later stages. It uses the same interpolation module as described above, but chooses ¢ adaptively based on the stage
index 7, under the (rather tenuous) assumption that the stage times are increasing, i.e. cJI- < cé for j < k:

q = max{qmax — @, 1}.

Cutoff order predictor

This predictor follows a similar idea as the previous algorithm, but monitors the actual stage times to determine the

polynomial interpolant to use for prediction. Denoting 7 = ¢ hh" the polynomial degree g is chosen as:

v hnp_1’

q_{qmax, if 7<i,

1 otherwise.

)

Bootstrap predictor

This predictor does not use any information from the preceding step, instead using information only within the current
step [tn—1,t,]. In addition to using the solution and ODE right-hand side function, y,—1 and f(t,—1,¥yn—1), this
approach uses the right-hand side from a previously computed stage solution in the same step, f(t,_1 + cJI- h,z;) to
construct a quadratic Hermite interpolant for the prediction. If we define the constants h = c§ hand 7 = c!h, the
predictor is given by

© T r ;
Zi :yn—1+ (T 25) f(tn—l,yn—1)+Ef(tn—l‘i’hazj)

32 Chapter 2. Mathematical Considerations

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

For stages without a nonzero preceding stage time, i.e. c§ # 0 for j < i, this method reduces to using the trivial

predictor z() = Yn—1. For stages having multiple preceding nonzero c‘g ,

to minimize the level of extrapolation used in the prediction.

; I
we choose the stage having largest ¢; value,

We note that in general, each stage solution z; has significantly worse accuracy than the time step solutions ¥,,—1, due
to the difference between the stage order and the method order in Runge-Kutta methods. As a result, the accuracy
of this predictor will generally be rather limited, but it is provided for problems in which this increased stage error is
better than the effects of extrapolation far outside of the previous time step interval [t,, _2, t,,—1].

We further note that although this method could be used with non-identity mass matrix M s I, support for that mode
is not currently implemented, so selection of this predictor in the case that M # I will result in use of the trivial
predictor.

Minimum correction predictor

The last predictor is not interpolation based; instead it utilizes all existing stage information from the current step to
create a predictor containing all but the current stage solution. Specifically, as discussed in equations (2.3) and (2.16),
each stage solves a nonlinear equation

i—1
Zz:yn—l‘i’hnZAE]fE n,jr < i)+ hn ZA n]’)
j=1

G(ZZ) =Z; — hnAI fI(n, iR) —a; = 0.
This prediction method merely computes the predictor z; as

i—1

Zz:yn—1+hnZAzE]fE n,jo = +h’ ZA 7J’)’
j=1

Zi = Qj.

We again note that although this method could be used with non-identity mass matrix M = I, support for that mode
is not currently implemented, so selection of this predictor in the case that M I will result in use of the trivial
predictor.

2.9.6 Mass matrix solver

Within the algorithms described above, there are multiple locations where a matrix-vector product
b= Mv (2.26)
or a linear solve
x=DM"1b (2.27)

are required.

Of course, for problems in which M = I both of these operators are trivial. However for problems with non-identity
M, these linear solves (2.27) may be handled using any valid linear solver module, in the same manner as described
in the section Linear solver methods for solving the linear Newton systems.

At present, for DIRK and ARK problems using a matrix-based solver for the Newton nonlinear iterations, the type
of matrix (dense, band, sparse, or custom) for the Jacobian matrix J must match the type of mass matrix M, since

2.9. Algebraic solvers 33

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

these are combined to form the Newton system matrix ,A. When matrix-based methods are employed, the user must
supply a routine to compute M in the appropriate form to match the structure of 4, with a user-supplied routine of
type ARKLsMassFn (). This matrix structure is used internally to perform any requisite mass matrix-vector products
(2.26).

When matrix-free methods are selected, a routine must be supplied to perform the mass-matrix-vector product, Mv.
As with iterative solvers for the Newton systems, preconditioning may be applied to aid in solution of the mass matrix
systems (2.27). When using an iterative mass matrix linear solver, we require that the norm of the preconditioned
linear residual satisfies

7]l < ere, (2.28)

where again, € is the nonlinear solver tolerance parameter from (2.23). When using iterative system and mass matrix
linear solvers, €7, may be specified separately for both tolerances (2.24) and (2.28).

In the above algorithmic description there are three locations where a linear solve of the form (2.27) is required: (a) in
constructing the time-evolved solution y,,, (b) in estimating the local temporal truncation error, and (c¢) in constructing
predictors for the implicit solver iteration (see section Maximum order predictor). Specifically, to construct the time-
evolved solution y,, from equation (2.3) we must solve

My, = My,_ 1+hnz (bF fE(tE 5 2) + 0L F1(th 5 24))
- =1

M(yn = yn-1) = hz (OF fE(tF 0 20) + 00 f1 () 521)) 5
=

S

hnz bEfE n7,7)"’_blf (nz?z))ﬂ
i=1

for the update v = y,, — y,—1. For construction of the stages z; this requires no mass matrix solves (as these are
included in the nonlinear system solve). Similarly, in computing the local temporal error estimate 7}, from equation
(2.13) we must solve systems of the form

MT, _hZ[(bE bE)fE(m,)+ (bf bf)f(m,z)]. (2.29)

Lastly, in constructing dense output and implicit predictors of order 2 or higher (as in the section Maximum order
predictor above), we must compute the derivative information fj, from the equation

M fio = 5w, yn) + (e, y)-

In total, these require only two mass-matrix linear solves (2.27) per attempted time step, with one more upon com-
pletion of a time step that meets the solution accuracy requirements. When fixed time-stepping is used (h,, = h), the
solve (2.29) is not performed at each attempted step.

2.10 Rootfinding

Many of the time-stepping modules in ARKode also support a rootfinding feature. This means that, while integrating
the IVP (2.1), these can also find the roots of a set of user-defined functions g; (¢, y) that depend on ¢ and the solution
vector y = y(¢). The number of these root functions is arbitrary, and if more than one g; is found to have a root in
any given interval, the various root locations are found and reported in the order that they occur on the ¢ axis, in the
direction of integration.

34 Chapter 2. Mathematical Considerations

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes in sign of g;(¢, y(t)),
denoted g; () for short. If a user root function has a root of even multiplicity (no sign change), it will almost certainly
be missed due to the realities of floating-point arithmetic. If such a root is desired, the user should reformulate the root
function so that it changes sign at the desired root.

The basic scheme used is to check for sign changes of any g;(¢) over each time step taken, and then (when a sign
change is found) to home in on the root (or roots) with a modified secant method /HS7980]. In addition, each time g
is evaluated, ARKode checks to see if g;(¢) = 0 exactly, and if so it reports this as a root. However, if an exact zero
of any g; is found at a point ¢, ARKode computes g(t + &) for a small increment 6, slightly further in the direction of
integration, and if any g;(t + §) = 0 also, ARKode stops and reports an error. This way, each time ARKode takes a
time step, it is guaranteed that the values of all g; are nonzero at some past value of ¢, beyond which a search for roots
is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has been done, ARKode
has an interval (¢, ty] in which roots of the g;(t) are to be sought, such that ¢y; is further ahead in the direction of
integration, and all g;(¢;,) # 0. The endpoint ty; is either ¢,,, the end of the time step last taken, or the next requested
output time ¢,y if this comes sooner. The endpoint ¢, is either ¢,,_1, or the last output time ¢,y (if this occurred within
the last step), or the last root location (if a root was just located within this step), possibly adjusted slightly toward
t,, if an exact zero was found. The algorithm checks g(¢y;) for zeros, and it checks for sign changes in (¢, tni). If
no sign changes are found, then either a root is reported (if some g; (tn;) = 0) or we proceed to the next time interval
(starting at tp;). If one or more sign changes were found, then a loop is entered to locate the root to within a rather
tight tolerance, given by

7 =100U (|tn| + ||) (where U = unit roundoff).

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have its root occur
first is the one with the largest value of |g;(¢ni)| / |g:(thi) — ¢i(t10)], corresponding to the closest to ¢, of the secant
method values. At each pass through the loop, a new value %4 is set, strictly within the search interval, and the
values of g;(tmiq) are checked. Then either ¢, or ¢y; is reset to ¢y, according to which subinterval is found to have the
sign change. If there is none in (to, tmia) but some g;(tmia) = 0, then that root is reported. The loop continues until
|thi — t10| < 7, and then the reported root location is #y;. In the loop to locate the root of g;(t), the formula for ¢4 is

i (thi) (tni — t1o)

t id — thi —)
o Y gi(thi) — agi(to)

where « is a weight parameter. On the first two passes through the loop, « is set to 1, making ¢.,iq the secant method
value. Thereafter, « is reset according to the side of the subinterval (low vs high, i.e. toward ?;, vs toward ty;) in which
the sign change was found in the previous two passes. If the two sides were opposite, « is set to 1. If the two sides
were the same, « is halved (if on the low side) or doubled (if on the high side). The value of ¢4 is closer to ¢}, when
a < 1 and closer to tp; when o > 1. If the above value of ¢4 is within 7/2 of ¢}, or ty;, it is adjusted inward, such
that its fractional distance from the endpoint (relative to the interval size) is between 0.1 and 0.5 (with 0.5 being the
midpoint), and the actual distance from the endpoint is at least 7/2.

Finally, we note that when running in parallel, ARKode’s rootfinding module assumes that the entire set of root
defining functions g; (¢, y) is replicated on every MPI task. Since in these cases the vector y is distributed across tasks,
it is the user’s responsibility to perform any necessary inter-task communication to ensure that g;(¢, y) is identical on
each task.

2.11 Inequality Constraints

ARKode permits the user to impose optional inequality constraints on individual components of the solution vector y.
Any of the following four constraints can be imposed: y; > 0, y; < 0, y; > 0, or y; < 0. The constraint satisfaction
is tested after a successful step and before the error test. If any constraint fails, the step size is reduced and a flag is
set to update the Jacobian or preconditioner if applicable. Rather than cutting the step size by some arbitrary factor,
ARKode estimates a new step size 1’ using a linear approximation of the components in y that failed the constraint

2.11. Inequality Constraints 35

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

test (including a safety factor of 0.9 to cover the strict inequality case). If a step fails to satisfy the constraints 10
times (a value which may be modified by the user) within a step attempt or fails with the minimum step size then the
integration is halted and an error is returned. In this case the user may need to employ other strategies as discussed
in ARKStep tolerance specification functions and ERKStep tolerance specification functions to satisfy the inequality
constraints.

36 Chapter 2. Mathematical Considerations

CHAPTER
THREE

CODE ORGANIZATION

The family of solvers referred to as SUNDIALS consists of the solvers CVODE and ARKode (for ODE systems),
KINSOL (for nonlinear algebraic systems), and IDA (for differential-algebraic systems). In addition, SUNDIALS also
includes variants of CVODE and IDA with sensitivity analysis capabilities (using either forward or adjoint methods),
called CVODES and IDAS, respectively.

The various solvers of this family share many subordinate modules. For this reason, it is organized as a family, with a
directory structure that exploits that sharing (see the following Figures SUNDIALS organization and SUNDIALS tree).
The following is a list of the solver packages presently available, and the basic functionality of each:

* CVODE, a linear multistep solver for stiff and nonstiff ODE systems ¢y = f(t,y) based on Adams and BDF
methods;

* CVODES, a linear multistep solver for stiff and nonstiff ODEs with sensitivity analysis capabilities;

* ARKode, a Runge-Kutta based solver for stiff, nonstiff, mixed stiff-nonstiff, and multirate ODE systems;
* IDA, a linear multistep solver for differential-algebraic systems F'(¢,y,¢) = 0 based on BDF methods;

* IDAS, a linear multistep solver for differential-algebraic systems with sensitivity analysis capabilities;

» KINSOL, a solver for nonlinear algebraic systems F'(u) = 0.

Note for modules that provide interfaces to third-party libraries (i.e., LAPACK, KLU, SuperLU_MT, SuperLU_DIST,
hypre, PETSc, Trilinos, and RAJA users will need to download and compile those packages independently.

3.1 ARKode organization

The ARKode package is written in the ANSI C language. The following summarizes the basic structure of the package,
although knowledge of this structure is not necessary for its use.

The overall organization of the ARKode package is shown in Figure ARKode organization. The central inte-
gration modules, implemented in the files arkode.h, arkode_impl.h, arkode_butcher.h, arkode.c,
arkode_arkstep.c, arkode_erkstep.c, arkode_mristep.h, and arkode_butcher.c, deal with
the evaluation of integration stages, the nonlinear solvers, estimation of the local truncation error, selection of step
size, and interpolation to user output points, among other issues. ARKode currently supports modified Newton, in-
exact Newton, and accelerated fixed-point solvers for these nonlinearly implicit problems. However, when using the
Newton-based iterations, or when using a non-identity mass matrix M # I, ARKode has flexibility in the choice of
method used to solve the linear sub-systems that arise. Therefore, for any user problem invoking the Newton solvers,
or any user problem with M # I, one (or more) of the linear system solver modules should be specified by the user,
which is then invoked as needed during the integration process.

For solving these linear systems, ARKode’s linear solver interface supports both direct and iterative linear solvers built
using the generic SUNLINSOL API (see Description of the SUNLinearSolver module). These solvers may utilize a
SUNMATRIX object for storing Jacobian information, or they may be matrix-free. Since ARKode can operate on

37

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

SUNDIALS

v i v i

[CVODE] [CVODES] [ARKODE] [IDA] [IDAS] [KINSOL]

5w =

VECTOR MATRIX LINEAR SOLVER NONLINEAR SOLVER
MODULES MODULES MODULES MODULES
Serial] [P(‘;JI*’P'I')e' [Dense] [Band] Matrix-based [Newton] [Fixed Point]

PThreads

[Sparse] [S':;EBL(;J] Dense][Band

[]
(e (=]
[]
[J

SuperLU
KLU] [MT

J
J(]

][OpenMP]

RAJA][ManyVectol]
J()

I]

MPI
MPI + X SuperLU
ManyVector DIST] [cuSOLVER
ParHyp
PETSc .
(hypre) Matrix-free

SPGMR SPFGMR

=S

PCG

Fig. 3.1: SUNDIALS organization: High-level diagram of the SUNDIALS structure

v v v
include src | pl | | config | | doc | | test |

—>| cvode |
L+ Comis] [med |
arkode _> arkode
[fmod |
—[__arkode |
—[|)
—>| idas |
— kinsol |
femix m‘
> sundials
—[__nvector |
—{_sunmatrix_|

.

cvode

nvector

.

sunlinsol

i3

i

sunnonlinsol sunnonlinsol

Fig. 3.2: SUNDIALS tree: Directory structure of the source tree.

38 Chapter 3. Code Organization

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

SUNDIALS

ARKODE

ARKLS: ARKNLS:
LINEAR SOLVER INTERFACE NONLINEAR SOLVER INTERFACE
A 4 A 4
| NVECTOR API | | SUNMATRIX API | | SUNLINEARSOLVER API | | SUNNONLINEARSOLVER API
VECTOR MATRIX LINEAR SOLVER NONLINEAR SOLVER
MODULES MODULES MODULES MODULES
A4

PRECONDITIONER MODULES
(ARKBBDPRE | ARKBANDPRE |

Fig. 3.3: ARKode organization: Overall structure of the ARKode package. Modules specific to ARKode are the
timesteppers (ARKODE), linear solver interfaces (ARKLS), nonlinear solver interfaces (ARKNLS), and precondi-
tioners (ARKBANDPRE and ARKBBDPRE); all other items correspond to generic SUNDIALS vector, matrix, and
solver modules.

any valid SUNLINSOL implementation, the set of linear solver modules available to ARKode will expand as new
SUNLINSOL modules are developed.

For users employing dense or banded Jacobians, ARKode includes algorithms for their approximation through differ-
ence quotients, although the user also has the option of supplying a routine to compute the Jacobian (or an approxima-
tion to it) directly. This user-supplied routine is required when using sparse or user-supplied Jacobian matrices.

For users employing iterative linear solvers, ARKode includes an algorithm for the approximation by difference quo-
tients of the product Av. Again, the user has the option of providing routines for this operation, in two phases: setup
(preprocessing of Jacobian data) and multiplication.

When solve problems with non-identity mass matrices, corresponding user-supplied routines for computing either the
mass matrix M or the product M v are required. Additionally, the type of linear solver module (iterative, dense-direct,
band-direct, sparse-direct) used for both the IVP system and mass matrix must match.

For preconditioned iterative methods for either the system or mass matrix solves, the preconditioning must be supplied
by the user, again in two phases: setup and solve. While there is no default choice of preconditioner analogous to the
difference-quotient approximation in the direct case, the references [BH1989] and [B1992], together with the example
and demonstration programs included with ARKode and CVODE, offer considerable assistance in building simple
preconditioners.

ARKaode’s linear solver interface consists of four primary phases, devoted to
1. memory allocation and initialization,
2. setup of the matrix/preconditioner data involved,
3. solution of the system, and
4. freeing of memory.

The setup and solution phases are separate because the evaluation of Jacobians and preconditioners is done only
periodically during the integration process, and only as required to achieve convergence.

3.1. ARKode organization 39

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

ARKode also provides two rudimentary preconditioner modules, for use with any of the Krylov iterative linear
solvers. The first, ARKBANDPRE is intended to be used with the serial or threaded vector data structures (NVEC-
TOR_SERIAL, NVECTOR_OPENMP and NVECTOR_PTHREADS), and provides a banded difference-quotient ap-
proximation to the Jacobian as the preconditioner, with corresponding setup and solve routines. The second precondi-
tioner module, ARKBBDPRE, is intended to work with the parallel vector data structure, NVECTOR_PARALLEL,
and generates a preconditioner that is a block-diagonal matrix with each block being a band matrix owned by a single
processor.

All state information used by ARKode to solve a given problem is saved in a single opaque memory structure, and
a pointer to that structure is returned to the user. For C and C++ applications there is no global data in the ARKode
package, and so in this respect it is reentrant. State information specific to the linear solver interface is saved in a
separate data structure, a pointer to which resides in the ARKode memory structure. State information specific to the
linear solver implementation (and matrix implementation, if applicable) are stored in their own data structures, that
are returned to the user upon construction, and subsequently provided to ARKode for use. We note that the ARKode
Fortran interface, however, currently uses global variables, so at most one of each of these objects may be created per
memory space (i.e. one per MPI task in distributed memory computations).

40 Chapter 3. Code Organization

CHAPTER
FOUR

USING ARKSTEP FOR C AND C++ APPLICATIONS

This chapter is concerned with the use of the ARKStep time-stepping module for the solution of initial value problems
(IVPs) in a C or C++ language setting. The following sections discuss the header files and the layout of the user’s
main program, and provide descriptions of the ARKStep user-callable functions and user-supplied functions.

The example programs described in the companion document /R2078] may be helpful. Those codes may be used as
templates for new codes and are included in the ARKode package examples subdirectory.

Users with applications written in Fortran should see the chapter FARKODE, an Interface Module for FORTRAN
Applications, which describes the Fortran/C interface module for ARKStep, and may look to the Fortran example
programs also described in the companion document [R2018]. These codes are also located in the ARKode package
examples directory.

The user should be aware that not all SUNLINSOL, SUNMATRIX, and preconditioning modules are compatible with
all NVECTOR implementations. Details on compatibility are given in the documentation for each SUNMATRIX
(see Matrix Data Structures) and each SUNLINSOL module (see Description of the SUNLinearSolver module). For
example, NVECTOR_PARALLEL is not compatible with the dense, banded, or sparse SUNMATRIX types, or with
the corresponding dense, banded, or sparse SUNLINSOL modules. Please check the sections Matrix Data Struc-
tures and Description of the SUNLinearSolver module to verify compatibility between these modules. In addition to
that documentation, we note that the ARKBANDPRE preconditioning module is only compatible with the NVEC-
TOR_SERIAL, NVECTOR_OPENMP or NVECTOR_PTHREADS vector implementations, and the preconditioner
module ARKBBDPRE can only be used with NVECTOR_PARALLEL.

ARKStep uses various input and output constants from the shared ARKode infrastructure. These are defined as needed
in this chapter, but for convenience the full list is provided separately in the section Appendix: ARKode Constants.

The relevant information on using ARKStep’s C and C++ interfaces is detailed in the following sub-sections.

4.1 Access to library and header files

At this point, it is assumed that the installation of ARKode, following the procedure described in the section ARKode
Installation Procedure, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load commands must make
reference to the appropriate locations for the library and header files required by ARKode. The relevant library files
are

e libdir/libsundials_arkode.lib,
e libdir/libsundials_nvecx.lib,

where the file extension . 1ib is typically . so for shared libraries and . a for static libraries. The relevant header files
are located in the subdirectories

e incdir/include/arkode

41

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

* incdir/include/sundials

* incdir/include/nvector

* incdir/include/sunmatrix

* incdir/include/sunlinsol

* incdir/include/sunnonlinsol

The directories 1ibdir and incdir are the installation library and include directories, respectively. For a default in-
stallation, these are instdir/lib and instdir/include, respectively, where instdir is the directory where
SUNDIALS was installed (see the section ARKode Installation Procedure for further details).

4.2 Data Types

The sundials_types.h file contains the definition of the variable type realtype, which is used by the SUN-
DIALS solvers for all floating-point data, the definition of the integer type sunindextype, which is used for vector
and matrix indices, and booleantype, which is used for certain logic operations within SUNDIALS.

4.2.1 Floating point types

The type “realtype” can be set to float, double, or long double, depending on how SUNDIALS was in-
stalled (with the default being doub1le). The user can change the precision of the SUNDIALS solvers’ floating-point
arithmetic at the configuration stage (see the section Configuration options (Unix/Linux)).

Additionally, based on the current precision, sundials_types.h defines the values BIG_REAL to be the largest
value representable as a realtype, SMALL_REAL to be the smallest positive value representable as a realtype,
and UNIT_ROUNDOFF to be the smallest realtype number, €, such that 1.0 4+ ¢ # 1.0.

Within SUNDIALS, real constants may be set to have the appropriate precision by way of a macro called RCONST.
It is this macro that needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant
with no suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a f1oat,
whereas using the suffix “L” makes it a 1ong double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a f1oat constant equal to 1.0, and Ctobe a 1long double
constant equal to 1.0. The macro call RCONST (1.0) automatically expands to 1.0 if realtype is double, to
1.0F if realtypeis float,orto 1.0Lif realtypeis long double. SUNDIALS uses the RCONST macro
internally to declare all of its floating-point constants.

Additionally, SUNDIALS defines several macros for common mathematical functions e.g.}, fabs, sqrt, exp, etc.
in sundials_math.h. The macros are prefixed with SUNR and expand to the appropriate C function based on
the realtype. For example, the macro SUNRabs expands to the C function fabs when realtype is double,
fabsf when realtypeis float, and fabsl when realtypeis long double.

A user program which uses the type realtype, the RCONST macro, and the SUNR mathematical function macros
is precision-independent except for any calls to precision-specific library functions. Our example programs use
realtype, RCONST, and the SUNR macros. Users can, however, use the type double, float, or long double
in their code (assuming that this usage is consistent with the typedef for realtype) and call the appropriate math li-
brary functions directly. Thus, a previously existing piece of ANSI C code can use SUNDIALS without modifying the
code to use realtype, RCONST, or the SUNR macros so long as the SUNDIALS libraries use the correct precision
(for details see ARKode Installation Procedure).

42 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

4.2.2 Integer types used for indexing

The type sunindextype is used for indexing array entries in SUNDIALS modules (e.g., vectors lengths and matrix
sizes) as well as for storing the total problem size. During configuration sunindextype may be selected to be either
a 32- or 64-bit signed integer with the default being 64-bit. See the section ARKode Installation Procedure for the
configuration option to select the desired size of sunindextype. When using a 32-bit integer the total problem size
is limited to 23! — 1 and with 64-bit integers the limit is 23 — 1. For users with problem sizes that exceed the 64-bit
limit an advanced configuration option is available to specify the type used for sunindextype.

A user program which uses sunindextype to handle indices will work with both index storage types except for any
calls to index storage-specific external libraries. Our C and C++ example programs use sunindextype. Users can,
however, use any compatible type (e.g., int, long int,int32_t,int64_t or long long int)intheir code,
assuming that this usage is consistent with the typedef for sunindextype on their architecture. Thus, a previously
existing piece of ANSI C code can use SUNDIALS without modifying the code to use sunindextype, so long as
the SUNDIALS libraries use the appropriate index storage type (for details ARKode Installation Procedure).

4.3 Header Files

When using ARKStep, the calling program must include several header files so that various macros and data types can
be used. The header file that is always required is:

* arkode/arkode_arkstep.h, the main header file for the ARKStep time-stepping module, which
defines the several types and various constants, includes function prototypes, and includes the shared
arkode/arkode.hand arkode/arkode_1s.h header files.

Note that arkode.h includes sundials_types.h directly, which defines the types realtype,
sunindextype and booleantype and the constants SUNFALSE and SUNTRUE, so a user program does not
need to include sundials_types.h directly.

Additionally, the calling program must also include a NVECTOR implementation header file, of the form
nvector/nvector_xx*+.h, corresponding to the user’s preferred data layout and form of parallelism. See
the section Vector Data Structures for details for the appropriate name. This file in turn includes the header file
sundials_nvector.h which defines the abstract N_Vector data type.

If the user includes a non-trivial implicit component to their ODE system, then each time step will require a nonlinear
solver for the resulting systems of equations — the default for this is a modified Newton iteration. If using a non-
default nonlinear solver module, or when interacting with a SUNNONLINSOL module directly, the calling program
must also include a SUNNONLINSOL header file, of the form sunnonlinsol/sunnonlinsol_*xx.h where
**+ 1S the name of the nonlinear solver module (see the section Description of the SUNNonlinearSolver Module for
more information). This file in turn includes the header file sundials_nonlinearsolver.h which defines the
abstract SUNNonlinearSolver data type.

If using a nonlinear solver that requires the solution of a linear system of the form Ax = b (e.g., the default Newton
iteration), then a linear solver module header file will also be required. Similarly, if the ODE system involves a non-
identity mass matrix M # I, then each time step will require a linear solver for systems of the form Mz = b. The
header files corresponding to the SUNDIALS-provided linear solver modules available for use with ARKode are:

¢ Direct linear solvers:

— sunlinsol/sunlinsol_dense.h, which is used with the dense linear solver module, SUNLIN-
SOL_DENSE;

— sunlinsol/sunlinsol_band.h, which is used with the banded linear solver module, SUNLIN-
SOL_BAND;

— sunlinsol/sunlinsol_lapackdense.h, which is used with the LAPACK dense linear solver
module, SUNLINSOL_LAPACKDENSE;

4.3. Header Files 43

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

- sunlinsol/sunlinsol_lapackband.h, which is used with the LAPACK banded linear solver
module, SUNLINSOL_LAPACKBAND:;

— sunlinsol/sunlinsol_klu.h, which is used with the KLU sparse linear solver module, SUNLIN-
SOL_KLU;

— sunlinsol/sunlinsol_superlumt.h, which is used with the SuperLU_MT sparse linear solver
module, SUNLINSOL_SUPERLUMT;

e Iterative linear solvers:

— sunlinsol/sunlinsol_spgmr.h, which is used with the scaled, preconditioned GMRES Krylov
linear solver module, SUNLINSOL_SPGMR;

— sunlinsol/sunlinsol_spfgmr.h, which is used with the scaled, preconditioned FGMRES
Krylov linear solver module, SUNLINSOL_SPFGMR;

— sunlinsol/sunlinsol_spbcgs.h, which is used with the scaled, preconditioned Bi-CGStab
Krylov linear solver module, SUNLINSOL_SPBCGS;

— sunlinsol/sunlinsol_sptfgmr.h, which is used with the scaled, preconditioned TFQMR
Krylov linear solver module, SUNLINSOL_SPTFQMR;

— sunlinsol/sunlinsol_pcg.h, which is used with the scaled, preconditioned CG Krylov linear
solver module, SUNLINSOL_PCG;

The header files for the SUNLINSOL_DENSE and SUNLINSOL_LAPACKDENSE linear solver modules include
the file sunmatrix/sunmatrix_dense.h, which defines the SUNMATRIX_DENSE matrix module, as well as
various functions and macros for acting on such matrices.

The header files for the SUNLINSOL_BAND and SUNLINSOL_LAPACKBAND linear solver modules include the
file sunmatrix/sunmatrix_band.h, which defines the SUNMATRIX_BAND matrix module, as well as vari-
ous functions and macros for acting on such matrices.

The header files for the SUNLINSOL_KLU and SUNLINSOL_SUPERLUMT linear solver modules include the file
sunmatrix/sunmatrix_sparse.h, which defines the SUNMATRIX_SPARSE matrix module, as well as vari-
ous functions and macros for acting on such matrices.

The header files for the Krylov iterative solvers include the file sundials/sundials_iterative.h, which
enumerates the preconditioning type and (for the SPGMR and SPFGMR solvers) the choices for the Gram-Schmidt
orthogonalization process.

Other headers may be needed, according to the choice of preconditioner, etc. For example, if preconditioning for an
iterative linear solver were performed using the ARKBBDPRE module, the header arkode/arkode_bbdpre.h
is needed to access the preconditioner initialization routines.

4.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of an ODE IVP
using the ARKStep module. Most of the steps are independent of the NVECTOR, SUNMATRIX, SUNLINSOL and
SUNNONLINSOL implementations used. For the steps that are not, refer to the sections Vector Data Structures,
Matrix Data Structures, Description of the SUNLinearSolver module, and Description of the SUNNonlinearSolver
Module for the specific name of the function to be called or macro to be referenced.

1. Initialize parallel or multi-threaded environment, if appropriate.

For example, call MPI_Init to initialize MPI if used, or set num_threads, the number of threads to use
within the threaded vector functions, if used.

44 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

2. Set problem dimensions, etc.

This generally includes the problem size, N, and may include the local vector length Nlocal.

Note: The variables N and N1ocal should be of type sunindextype.

3. Set vector of initial values

To set the vector y0 of initial values, use the appropriate functions defined by the particular NVECTOR imple-
mentation.

For native SUNDIALS vector implementations (except the CUDA and RAJA based ones), use a call of the form

y0 = N_VMake_#*#*«* (..., ydata);

if the realtype array ydata containing the initial values of y already exists. Otherwise, create a new vector
by making a call of the form

y0 = N_VNew_xx*x(...);

and then set its elements by accessing the underlying data where it is located with a call of the form

ydata = N_VGetArrayPointer_ =%« (yO0);

See the sections The NVECTOR_SERIAL Module through The NVECTOR_PTHREADS Module for details.

For the HYPRE and PETSc vector wrappers, first create and initialize the underlying vector, and then create the
NVECTOR wrapper with a call of the form

y0 = N_VMake_xxx (yvec);

where yvec is a HYPRE or PETSc vector. Note that calls like N_VNew_*xxx (...) and
N_VGetArrayPointer_xx=* (...) are not available for these vector wrappers. See the sections The
NVECTOR_PARHYP Module and The NVECTOR_PETSC Module for details.

If using either the CUDA- or RAJA-based vector implementations use a call of the form

y0 = N_VMake_x** (..., C);

where c is a pointer to a suncudavec or sunrajavec vector class if this class already exists. Otherwise,
create a new vector by making a call of the form

N_VGetDeviceArrayPointer_x#*x*

or

N_VGetHostArrayPointer_ xxx

Note that the vector class will allocate memory on both the host and device when instantiated. See the sections
The NVECTOR_CUDA Module and The NVECTOR_RAJA Module for details.

4. Create ARKStep object

Call arkode_mem = ARKStepCreate(...) to create the ARKStep memory block.
ARKStepCreate () returns a void* pointer to this memory structure. See the section ARKStep ini-
tialization and deallocation functions for details.

5. Specify integration tolerances

Call ARKStepSStolerances () or ARKStepSVtolerances () to specify either a scalar relative toler-
ance and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute tolerances, respectively.
Alternatively, call ARKStepWFtolerances () to specify a function which sets directly the weights used in
evaluating WRMS vector norms. See the section ARKStep tolerance specification functions for details.

4.4. A skeleton of the user’s main program 45

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

If a problem with non-identity mass matrix is used, and the solution units differ considerably from
the equation units, absolute tolerances for the equation residuals (nonlinear and linear) may be spec-
ified separately through calls to ARKStepResStolerance (), ARKStepResVtolerance(), or
ARKStepResFtolerance ().

. Create matrix object

If a nonlinear solver requiring a linear solver will be used (e.g., a Newton iteration) and the linear solver will be
a matrix-based linear solver, then a template Jacobian matrix must be created by using the appropriate functions
defined by the particular SUNMATRIX implementation.

For the SUNDIALS-supplied SUNMATRIX implementations, the matrix object may be created using a call of
the form

SUNMatrix A = SUNBandMatrix(...);
or

SUNMatrix A = SUNDenseMatrix(...);
or

SUNMatrix A = SUNSparseMatrix(...);

Similarly, if the problem involves a non-identity mass matrix, and the mass-matrix linear systems will be solved
using a direct linear solver, then a template mass matrix must be created by using the appropriate functions
defined by the particular SUNMATRIX implementation.

NOTE: The dense, banded, and sparse matrix objects are usable only in a serial or threaded environment.

. Create linear solver object

If a nonlinear solver requiring a linear solver will be used (e.g., a Newton iteration), or if the problem involves
a non-identity mass matrix, then the desired linear solver object(s) must be created by using the appropriate
functions defined by the particular SUNLINSOL implementation.

For any of the SUNDIALS-supplied SUNLINSOL implementations, the linear solver object may be created
using a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

where x can be replaced with “Dense”, “SPGMR?”, or other options, as discussed in the sections Linear solver
interface functions and Description of the SUNLinearSolver module.

. Set linear solver optional inputs

Call «Set « functions from the selected linear solver module to change optional inputs specific to that linear
solver. See the documentation for each SUNLINSOL module in the section Description of the SUNLinearSolver
module for details.

. Attach linear solver module

If a linear solver was created above for implicit stage solves, initialize the ARKLS linear solver interface by
attaching the linear solver object (and Jacobian matrix object, if applicable) with the call (for details see the
section Linear solver interface functions):

ier = ARKStepSetLinearSolver(...);

Similarly, if the problem involves a non-identity mass matrix, initialize the ARKLS mass matrix linear solver
interface by attaching the mass linear solver object (and mass matrix object, if applicable) with the call (for
details see the section Linear solver interface functions):

46

Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

ier = ARKStepSetMassLinearSolver(...);

10. Set optional inputs

Call ARKStepSet functions to change any optional inputs that control the behavior of ARKStep from their
default values. See the section Optional input functions for details.

11. Create nonlinear solver object

If the problem involves an implicit component, and if a non-default nonlinear solver object will be used for im-
plicit stage solves (see the section Nonlinear solver interface functions), then the desired nonlinear solver object
must be created by using the appropriate functions defined by the particular SUNNONLINSOL implementation
(e.g., NLS = SUNNonlinSol_x#*x (...); where »«x is the name of the nonlinear solver (see the section
Description of the SUNNonlinearSolver Module for details).

For the SUNDIALS-supplied SUNNONLINSOL implementations, the nonlinear solver object may be created
using a call of the form

SUNNonlinearSolver NLS = SUNNonlinSol_Newton(...);
or
SUNNonlinearSolver NLS = SUNNonlinSol_FixedPoint (...);

12. Attach nonlinear solver module

If a nonlinear solver object was created above, then it must be attached to ARKStep using the call (for details
see the section Nonlinear solver interface functions):

ier = ARKStepSetNonlinearSolver(...);

13. Set nonlinear solver optional inputs

Call the appropriate set functions for the selected nonlinear solver module to change optional inputs specific
to that nonlinear solver. These must be called after attaching the nonlinear solver to ARKStep, otherwise the
optional inputs will be overridden by ARKStep defaults. See the section Description of the SUNNonlinearSolver
Module for more information on optional inputs.

14. Specify rootfinding problem

Optionally, call ARKStepRootInit () to initialize a rootfinding problem to be solved during the integration
of the ODE system. See the section Rootfinding initialization function for general details, and the section
Optional input functions for relevant optional input calls.

15. Advance solution in time

For each point at which output is desired, call

ier = ARKStepEvolve (arkode_mem, tout, yout, &tret, itask);

Here, itask specifies the return mode. The vector yout (which can be the same as the vector y0 above) will
contain y(teu). See the section ARKStep solver function for details.

16. Get optional outputs
Call ARKStepGet * functions to obtain optional output. See the section Optional output functions for details.
17. Deallocate memory for solution vector

Upon completion of the integration, deallocate memory for the vector y (or yout) by calling the destructor
function:

4.4. A skeleton of the user’s main program 47

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

N_VDestroy (y) ;

18. Free solver memory

Call ARKStepFree (&arkode_mem) to free the memory allocated for the ARKStep module (and any non-
linear solver module).

19. Free linear solver and matrix memory

Call SUNLinSolFree () and (possibly) SUNMatDestroy () to free any memory allocated for the linear
solver and matrix objects created above.

20. Finalize MPI, if used
CallMPI_Finalize to terminate MPI.

SUNDIALS provides some linear solvers only as a means for users to get problems running and not as highly efficient
solvers. For example, if solving a dense system, we suggest using the LAPACK solvers if the size of the linear
system is > 50,000 (thanks to A. Nicolai for his testing and recommendation). The table below shows the linear
solver interfaces available as SUNLinearSolver modules and the vector implementations required for use. As
an example, one cannot use the dense direct solver interfaces with the MPI-based vector implementation. However,
as discussed in section Description of the SUNLinearSolver module the SUNDIALS packages operate on generic
SUNLinearSolver objects, allowing a user to develop their own solvers should they so desire.

4.4.1 SUNDIALS linear solver interfaces and vector implementations that can be
used for each

Linear Solver
Interface
Dense

Band
LapackDense
LapackBand
KLU
SuperLU_DIST
SuperLU_MT
SPGMR
SPFGMR
SPBCGS
SPTFQMR
PCG

User supplied

Parallel OpenMP pThreads hypre PETSc CUDA RAJA| User
(MPI) Vec. Vec. Suppl.

>~
>~

XNNXMNNNMXMXM%-%’
>~

i R R R R R R R R el e
DAL R DR DKL PR P PR | | | R K X
DAL R DR DR PR P PR | | | R X

D[R PR XX | e
D[R PR X< R
DR[| | X | e
DR PR| PR]| R
elialkelielRalls

4.5 User-callable functions

This section describes the functions that are called by the user to setup and then solve an IVP using the ARKStep
time-stepping module. Some of these are required; however, starting with the section Optional input functions, the
functions listed involve optional inputs/outputs or restarting, and those paragraphs may be skipped for a casual use of
ARKode’s ARKStep module. In any case, refer to the preceding section, A skeleton of the user’s main program, for
the correct order of these calls.

On an error, each user-callable function returns a negative value (or NULL if the function returns a pointer) and sends
an error message to the error handler routine, which prints the message to st derr by default. However, the user can

48 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

set a file as error output or can provide her own error handler function (see the section Optional input functions for
details).

4.5.1 ARKStep initialization and deallocation functions

void* ARKStepCreate (ARKRhsFn fe, ARKRhsFn fi, realtype t0, N_Vector y0)
This function creates an internal memory block for a problem to be solved using the ARKStep time-stepping
module in ARKode.

Arguments:

* fe —the name of the C function (of type ARKRhsFn ()) defining the explicit portion of the right-hand
side functionin M g = fE(t,y) + fL(t,y).

¢ fi —the name of the C function (of type ARKRhsFn ()) defining the implicit portion of the right-hand
side function in M ¢ = fE(t,y) + f1(t,y).

* 10 — the initial value of ¢.
* y0 — the initial condition vector y(¢o).

Return value: If successful, a pointer to initialized problem memory of type voidx, to be passed to all user-
facing ARKStep routines listed below. If unsuccessful, a NULL pointer will be returned, and an error message
will be printed to stderr.

void ARKStepFree (void** arkode_mem)
This function frees the problem memory arkode_mem created by ARKStepCreate ().

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

Return value: None

4.5.2 ARKStep tolerance specification functions

These functions specify the integration tolerances. One of them should be called before the first call to
ARKStepEvolve (); otherwise default values of reltol = le-4 and abstol = 1le-9 will be used, which
may be entirely incorrect for a specific problem.

The integration tolerances reltol and abstol define a vector of error weights, ewt. In the case of
ARKStepSStolerances (), this vector has components

‘ewt[i] = 1.0/ (reltol*abs(y[i]) + abstol);

whereas in the case of ARKStepSVtolerances () the vector components are given by

’ewt[i] = 1.0/ (reltol*abs(y[i]) + abstol[i]);

This vector is used in all error and convergence tests, which use a weighted RMS norm on all error-like vectors v:

L X 1/2
lv[lwrnms = <N E(Ui ewti)2> ,

where [V is the problem dimension.

Alternatively, the user may supply a custom function to supply the ewt vector, through a call to
ARKStepWFtolerances ().

4.5. User-callable functions 49

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

int ARKStepSStolerances (void* arkode_mem, realtype reltol, realtype abstol)
This function specifies scalar relative and absolute tolerances.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* reltol — scalar relative tolerance.
* abstol — scalar absolute tolerance.
Return value:
e ARK SUCCESS if successful
e ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module
* ARK_ILL _INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKStepSVtolerances (void* arkode_mem, realtype reltol, N_Vector abstol)
This function specifies a scalar relative tolerance and a vector absolute tolerance (a potentially different absolute
tolerance for each vector component).

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* reltol — scalar relative tolerance.
* abstol — vector containing the absolute tolerances for each solution component.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module
e ARK ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKStepWFtolerances (void* arkode_mem, ARKEwtFn efun)
This function specifies a user-supplied function efun to compute the error weight vector ewt.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* efun — the name of the function (of type ARKEwtFn ()) that implements the error weight vector
computation.

Return value:
e ARK _SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

Moreover, for problems involving a non-identity mass matrix M # I, the units of the solution vector y may differ from
the units of the IVP, posed for the vector My. When this occurs, iterative solvers for the Newton linear systems and
the mass matrix linear systems may require a different set of tolerances. Since the relative tolerance is dimensionless,
but the absolute tolerance encodes a measure of what is “small” in the units of the respective quantity, a user may
optionally define absolute tolerances in the equation units. In this case, ARKStep defines a vector of residual weights,
rwt for measuring convergence of these iterative solvers. In the case of ARKStepResStolerance (), this vector
has components

50 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

‘rwt[i] = 1.0/ (reltolxabs (My[i]) + rabstol);

whereas in the case of ARKStepResVtolerance () the vector components are given by

‘rwt[i] = 1.0/ (reltolxabs (My[i]) + rabstol[il]);

This residual weight vector is used in all iterative solver convergence tests, which similarly use a weighted RMS norm
on all residual-like vectors v:

L 1/2
_ et)2
[vllwras = (N Z(Uz rwt;)) ;

i=1
where N is the problem dimension.

As with the error weight vector, the user may supply a custom function to supply the rwt vector, through a call to
ARKStepResFtolerance (). Further information on all three of these functions is provided below.

int ARKStepResStolerance (void* arkode_mem, realtype abstol)
This function specifies a scalar absolute residual tolerance.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* rabstol — scalar absolute residual tolerance.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module
e ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKStepResVtolerance (void* arkode_mem, N_Vector rabstol)
This function specifies a vector of absolute residual tolerances.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* rabstol — vector containing the absolute residual tolerances for each solution component.
Return value:

e ARK _SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

e ARK ILL INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKStepResFtolerance (void* arkode_mem, ARKRwtFn rfun)
This function specifies a user-supplied function rfun to compute the residual weight vector rwt.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* rfun — the name of the function (of type ARKRwtFn ()) that implements the residual weight vector
computation.

Return value:

4.5. User-callable functions 51

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

General advice on the choice of tolerances

For many users, the appropriate choices for tolerance values in reltol, abstol, and rabstol are a concern. The
following pieces of advice are relevant.

1. The scalar relative tolerance reltol is to be set to control relative errors. So a value of 10~# means that errors
are controlled to .01%. We do not recommend using reltol larger than 1073, On the other hand, reltol
should not be so small that it is comparable to the unit roundoff of the machine arithmetic (generally around
10~'® for double-precision).

2. The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute errors when any
components of the solution vector y may be so small that pure relative error control is meaningless. For example,
if y; starts at some nonzero value, but in time decays to zero, then pure relative error control on y; makes no
sense (and is overly costly) after y; is below some noise level. Then abstol (if scalar) or abstol [i] (ifa
vector) needs to be set to that noise level. If the different components have different noise levels, then abstol
should be a vector. For example, see the example problem ark_robertson.c, and the discussion of it in
the ARKode Examples Documentation /R2018]. In that problem, the three components vary between O and 1,
and have different noise levels; hence the atols vector therein. It is impossible to give any general advice on
abstol values, because the appropriate noise levels are completely problem-dependent. The user or modeler
hopefully has some idea as to what those noise levels are.

3. The residual absolute tolerances rabstol (whether scalar or vector) follow a similar explanation as for
abstol, except that these should be set to the noise level of the equation components, i.e. the noise level
of My. For problems in which M = I, it is recommended that rabstol be left unset, which will default to
the already-supplied abstol values.

4. Finally, it is important to pick all the tolerance values conservatively, because they control the error committed
on each individual step. The final (global) errors are an accumulation of those per-step errors, where that
accumulation factor is problem-dependent. A general rule of thumb is to reduce the tolerances by a factor of
10 from the actual desired limits on errors. So if you want .01% relative accuracy (globally), a good choice
for reltol is 1075, In any case, it is a good idea to do a few experiments with the tolerances to see how the
computed solution values vary as tolerances are reduced.

Advice on controlling nonphysical negative values

In many applications, some components in the true solution are always positive or non-negative, though at times very
small. In the numerical solution, however, small negative (nonphysical) values can then occur. In most cases, these
values are harmless, and simply need to be controlled, not eliminated, but in other cases any value that violates a
constraint may cause a simulation to halt. For both of these scenarios the following pieces of advice are relevant.

1. The best way to control the size of unwanted negative computed values is with tighter absolute tolerances. Again
this requires some knowledge of the noise level of these components, which may or may not be different for
different components. Some experimentation may be needed.

2. If output plots or tables are being generated, and it is important to avoid having negative numbers appear there
(for the sake of avoiding a long explanation of them, if nothing else), then eliminate them, but only in the context
of the output medium. Then the internal values carried by the solver are unaffected. Remember that a small
negative value in y returned by ARKStep, with magnitude comparable to abstol or less, is equivalent to zero
as far as the computation is concerned.

52 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

3. The user’s right-hand side routines f¥ and f! should never change a negative value in the solution vector y to a
non-negative value in attempt to “fix” this problem, since this can lead to numerical instability. If the f¥ or f/
routines cannot tolerate a zero or negative value (e.g. because there is a square root or log), then the offending
value should be changed to zero or a tiny positive number in a temporary variable (not in the input y vector) for
the purposes of computing £ (¢,%) or f1(t,vy).

4. Positivity and non-negativity constraints on components can be enforced by use of the recoverable error return
feature in the user-supplied right-hand side functions, f¥ and f!. When a recoverable error is encountered,
ARKStep will retry the step with a smaller step size, which typically alleviates the problem. However, because
this option involves some additional overhead cost, it should only be exercised if the use of absolute tolerances
to control the computed values is unsuccessful.

4.5.3 Linear solver interface functions

As previously explained, the Newton iterations used in solving implicit systems within ARKStep require the solution
of linear systems of the form

A (Zi(m)) sm+l) — _ (Z(m))

K3
where

I
A~ M —~J, J:ai.
dy

ARKode’s ARKLs linear solver interface supports all valid SUNLinearSolver modules for this task.

Matrix-based SUNLinearSolver modules utilize SUNMat rix objects to store the approximate Jacobian matrix
J, the Newton matrix A, the mass matrix M, and factorizations used throughout the solution process.

Matrix-free SUNLinearSolver modules instead use iterative methods to solve the Newton systems of equations,
and only require the action of the matrix on a vector, .Av. With most of these methods, preconditioning can be done
on the left only, on the right only, on both the left and the right, or not at all. The exceptions to this rule are SPFGMR
that supports right preconditioning only and PCG that performs symmetric preconditioning. For the specification of
a preconditioner, see the iterative linear solver portions of the sections Optional input functions and User-supplied
Sfunctions.

If preconditioning is done, user-supplied functions should be used to define left and right preconditioner matrices P;
and P; (either of which could be the identity matrix), such that the product P, P, approximates the Newton matrix
A=M —~J.

To specify a generic linear solver for ARKStep to use for the Newton systems, after the call to ARKStepCreate ()
but before any calls to ARKStepEvolve (), the user’s program must create the appropriate SUNLinearSolver
object and call the function ARKStepSetLinearSolver (), as documented below. To create the
SUNLinearSolver object, the user may call one of the SUNDIALS-packaged SUNLinSol module constructor
routines via a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

The current list of such constructor routines includes SUNLinSol Dense (), SUNLinSol Band(),
SUNLinSol_LapackDense (), SUNLinSol_LapackBand(), SUNLinSol_KLU(),
SUNLinSol_SuperLUMT (), SUNLinSol_SPGMR (), SUNLinSol_SPFGMR (), SUNLinSol_SPBCGS (),
SUNLinSol_SPTFQOMR(),and SUNLinSol PCG().

Alternately, a user-supplied SUNLinearSolver module may be created and used instead. The use of each of the
generic linear solvers involves certain constants, functions and possibly some macros, that are likely to be needed
in the user code. These are available in the corresponding header file associated with the specific SUNMatrix or
SUNLinearSolver module in question, as described in the sections Matrix Data Structures and Description of the
SUNLinearSolver module.

4.5. User-callable functions 53

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Once this solver object has been constructed, the user should attach it to ARKStep via a call to
ARKStepSetLinearSolver (). The first argument passed to this function is the ARKStep memory pointer re-
turned by ARKStepCreate (); the second argument is the SUNLinearSolver object created above. The third
argument is an optional SUNMat rix object to accompany matrix-based SUNLinearSolver inputs (for matrix-free
linear solvers, the third argument should be NULL). A call to this function initializes the ARKLSs linear solver inter-
face, linking it to the ARKStep integrator, and allows the user to specify additional parameters and routines pertinent
to their choice of linear solver.

int ARKStepSetLinearSolver (void* arkode_mem, SUNLinearSolver LS, SUNMatrix J)
This function specifies the SUNLinearSolver object that ARKStep should use, as well as a template Jaco-
bian SUNMat rix object (if applicable).

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

e LS —the SUNLinearSolver object to use.

* J — the template Jacobian SUNMat rix object to use (or NULL if not applicable).
Return value:

e ARKLS SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_MEM_FAIL if there was a memory allocation failure

* ARKLS_ILL_INPUT if ARKLS is incompatible with the provided LS or J input objects, or the current
N_Vector module.

Notes: If LS is a matrix-free linear solver, then the J argument should be NULL.

If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used in the solve process, so if
additional storage is required within the SUNMat rix object (e.g. for factorization of a banded matrix), ensure
that the input object is allocated with sufficient size (see the documentation of the particular SUNMATRIX type
in the section Matrix Data Structures for further information).

When using sparse linear solvers, it is typically much more efficient to supply J so that it includes the full
sparsity pattern of the Newton system matrices A = I — ~J (or A = M — ~J in the case of non-identity mass
matrix), even if J itself has zeros in nonzero locations of I (or M). The reasoning for this is that .4 is constructed
in-place, on top of the user-specified values of J, so if the sparsity pattern in J is insufficient to store A then it
will need to be resized internally by ARKStep.

4.5.4 Mass matrix solver specification functions

As discussed in section Mass matrix solver, if the ODE system involves a non-identity mass matrix M # I, then
ARKStep must solve linear systems of the form

Mx =b.

ARKode’s ARKLs mass-matrix linear solver interface supports all valid SUNLinearSolver modules for this task.
For iterative linear solvers, user-supplied preconditioning can be applied. For the specification of a preconditioner, see
the iterative linear solver portions of the sections Optional input functions and User-supplied functions. If precondi-
tioning is to be performed, user-supplied functions should be used to define left and right preconditioner matrices P;
and Ps (either of which could be the identity matrix), such that the product P; P> approximates the mass matrix M.

To specify a generic linear solver for ARKStep to use for mass matrix systems, after the call to ARKStepCreate ()
but before any calls to ARKStepEvolve (), the user’s program must create the appropriate SUNLinearSolver
object and call the function ARKStepSetMassLinearSolver (), as documented below. The first argument
passed to this functions is the ARKStep memory pointer returned by ARKStepCreate (); the second argument

54 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

is the desired SUNLinearSolver object to use for solving mass matrix systems. The third object is a template
SUNMatrix to use with the provided SUNLinearSolver (if applicable). The fourth input is a flag to indicate
whether the mass matrix is time-dependent, i.e. M = M (t) or not. A call to this function initializes the ARKLs mass
matrix linear solver interface, linking this to the main ARKStep integrator, and allows the user to specify additional
parameters and routines pertinent to their choice of linear solver.

The use of each of the generic linear solvers involves certain constants and possibly some macros, that are likely to be
needed in the user code. These are available in the corresponding header file associated with the specific SUNMat rix
or SUNLinearSolver module in question, as described in the sections Matrix Data Structures and Description of
the SUNLinearSolver module.

Note: if the user program includes linear solvers for both the Newton and mass matrix systems, these must have the
same type:

* If both are matrix-based, then they must utilize the same SUNMatrix type, since these will be added when
forming the Newton system matrices .A. In this case, both the Newton and mass matrix linear solver interfaces
can use the same SUNLinearSolver object, although different solver objects (e.g. with different solver
parameters) are also allowed.

¢ If both are matrix-free, then the Newton and mass matrix SUNLinearSolver objects must be different. These
may even use different solver algorithms (SPGMR, SPBCGS, etc.), if desired. For example, if the mass matrix
is symmetric but the Jacobian is not, then PCG may be used for the mass matrix systems and SPGMR for the
Newton systems.

As with the Newton system solvers, the mass matrix linear system solvers listed below are all built on top of generic
SUNDIALS solver modules.

int ARKStepSetMassLinearSolver (void* arkode_mem, SUNLinearSolver LS, SUNMatrix M, boolean-

type time_dep)
This function specifies the SUNLinearSolver object that ARKStep should use for mass matrix systems, as
well as a template SUNMat rix object.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
e LS —the SUNLinearSolver object to use.
* M — the template mass SUNMat rix object to use.

* time_dep — flag denoting whether the mass matrix depends on the independent variable (M = M (t))
ornot (M # M (t)). SUNTRUE indicates time-dependence of the mass matrix. Currently, only values
of “SUNFALSE” are supported.

Return value:
e ARKLS SUCCESS if successful
* ARKLS_MEM_NULL if the ARKStep memory was NULL
* ARKLS_MEM_FAIL if there was a memory allocation failure

* ARKLS ILL_INPUT if ARKLS is incompatible with the provided LS or M input objects, or the current
N_Vector module.

Notes: If LS is a matrix-free linear solver, then the M argument should be NULL.

If LS is a matrix-based linear solver, then the template mass matrix M will be used in the solve process, so if
additional storage is required within the SUNMat rix object (e.g. for factorization of a banded matrix), ensure
that the input object is allocated with sufficient size.

The time_dep flag is currently unused, serving as a placeholder for planned future functionality. As such, ARK-
Step only computes and factors the mass matrix once, with the results reused throughout the entire ARKStep
simulation.

4.5. User-callable functions 55

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Unlike the system Jacobian, the system mass matrix cannot be approximated using finite-differences of any
functions provided to ARKStep. Hence, use of the a matrix-based LS requires the user to provide a mass-matrix
constructor routine (see ARKLsMassFn and ARKStepSetMassFn ()).

Similarly, the system mass matrix-vector-product cannot be approximated using finite-differences of any func-
tions provided to ARKStep. Hence, use of a matrix-free LS requires the user to provide a mass-matrix-times-
vector product routine (see ARKLsMassTimesVecFn and ARKStepSetMassTimes ()).

4.5.5 Nonlinear solver interface functions

When changing the nonlinear solver in ARKStep, after the call to ARKStepCreate () but before any
calls to ARKStepEvolve (), the user’s program must create the appropriate SUNNonlinSol object and call
ARKStepSetNonlinearSolver (),asdocumented below. If any calls to ARKStepEvolve () have been made,
then ARKStep will need to be reinitialized by calling ARKStepReInit () to ensure that the nonlinear solver is ini-
tialized correctly before any subsequent calls to ARKStepEvolve ().

The first argument passed to the routine ARKStepSetNonlinearSolver () is the ARKStep memory pointer
returned by ARKStepCreate (); the second argument passed to this function is the desired SUNNonlinSol object
to use for solving the nonlinear system for each implicit stage. A call to this function attaches the nonlinear solver to
the main ARKStep integrator.

int ARKStepSetNonlinearSolver (void* arkode_mem, SUNNonlinearSolver NLS)
This function specifies the SUNNonlinearSolver object that ARKStep should use for implicit stage solves.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
e NLS - the SUNNonlinearSolver object to use.
Return value:
e ARK SUCCESS if successful
e ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_MEM_FAIL if there was a memory allocation failure
* ARK_ILL _INPUT if ARKStep is incompatible with the provided NLS input object.

Notes: ARKStep will use the Newton SUNNonlinSol module by default; a call to this routine replaces that
module with the supplied NLS object.

4.5.6 Rootfinding initialization function

As described in the section Rootfinding, while solving the IVP, ARKode’s time-stepping modules have the capa-
bility to find the roots of a set of user-defined functions. To activate the root-finding algorithm, call the following
function. This is normally called only once, prior to the first call to ARKStepEvolve (), but if the rootfinding prob-
lem is to be changed during the solution, ARKStepRootInit () can also be called prior to a continuation call to
ARKStepEvolve ().

int ARKStepRoot Init (void* arkode_mem, int nrtfn, ARKRootFn g)
Initializes a rootfinding problem to be solved during the integration of the ODE system. It must be called after
ARKStepCreate (), and before ARKStepEvolve ().

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* nrtfn — number of functions g;, an integer > 0.

56 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

¢ g —name of user-supplied function, of type ARKRootFn (), defining the functions g; whose roots
are sought.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_MEM_FAIL if there was a memory allocation failure
* ARK_ILL_INPUT if nrtfn is greater than zero but g = NULL.

Notes: To disable the rootfinding feature after it has already been initialized, or to free memory associated with
ARKStep’s rootfinding module, call ARKStepRootInit with nrtfn = 0.

Similarly, if a new IVP is to be solved with acall to ARKStepReTInit (), where the new IVP has no rootfinding
problem but the prior one did, then call ARKStepRootInit with nrtfn = 0.

4.5.7 ARKStep solver function

This is the central step in the solution process — the call to perform the integration of the IVP. One of the input
arguments (itask) specifies one of two modes as to where ARKStep is to return a solution. These modes are modified
if the user has set a stop time (with a call to the optional input function ARKStepSet StopTime ()) or has requested
rootfinding.

int ARKStepEvolve (void* arkode_mem, realtype tout, N_Vector yout, realtype *tret, int itask)
Integrates the ODE over an interval in ¢.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* tout — the next time at which a computed solution is desired.
* yout — the computed solution vector.
* tret — the time corresponding to yout (output).
* itask — a flag indicating the job of the solver for the next user step.

The ARK_NORMAL option causes the solver to take internal steps until it has just overtaken a user-
specified output time, fout, in the direction of integration, i.e. t,_1 < tout < t, for forward inte-
gration, or ¢, < tout < t,_; for backward integration. It will then compute an approximation to
the solution y(tout) by interpolation (using one of the dense output routines described in the section
Interpolation).

The ARK_ONE_STEP option tells the solver to only take a single internal step y,—1 — ¥y, and then
return control back to the calling program. If this step will overtake fout then the solver will again
return an interpolated result; otherwise it will return a copy of the internal solution y,, in the vector
yout

Return value:
e ARK SUCCESS if successful.

e ARK_ROOT_RETURN if ARKStepEvolve () succeeded, and found one or more roots. If the num-
ber of root functions, nrtfn, is greater than 1, call ARKStepGetRoot Info () to see which g; were
found to have a root at (*tret).

* ARK_TSTOP_RETURN if ARKStepEvolve () succeeded and returned at tstop.
* ARK_MEM_NULL if the arkode_mem argument was NULL.

4.5. User-callable functions 57

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

e ARK_NO_MALLOC if arkode_mem was not allocated.

* ARK_ILL_INPUT if one of the inputs to ARKStepEvolve () is illegal, or some other input to the
solver was either illegal or missing. Details will be provided in the error message. Typical causes of
this failure:

1. A component of the error weight vector became zero during internal time-stepping.

2. The linear solver initialization function (called by the user after calling ARKStepCreate ())
failed to set the linear solver-specific Isolve field in arkode_mem.

3. A root of one of the root functions was found both at a point ¢ and also very near ¢.
4. The initial condition violates the inequality constraints.

* ARK_TOO_MUCH_WORK if the solver took mxstep internal steps but could not reach tout. The
default value for mxstep is MXSTEP_DEFAULT = 500.

* ARK_TOO_MUCH_ACC fif the solver could not satisfy the accuracy demanded by the user for some
internal step.

* ARK_ERR_FAILURE fif error test failures occurred either too many times (ark_maxnef) during one
internal time step or occurred with |h| = Apip.

* ARK_CONV_FAILURE if either convergence test failures occurred too many times (ark_maxncf)
during one internal time step or occurred with |h| = i

e ARK LINIT FAIL if the linear solver’s initialization function failed.

* ARK_LSETUP_FAIL if the linear solver’s setup routine failed in an unrecoverable manner.
e ARK LSOLVE_FAIL if the linear solver’s solve routine failed in an unrecoverable manner.
e ARK_MASSINIT FAIL if the mass matrix solver’s initialization function failed.

* ARK_MASSSETUP_FAIL if the mass matrix solver’s setup routine failed.

* ARK_MASSSOLVE_FAIL if the mass matrix solver’s solve routine failed.

* ARK_VECTOROP_ERR a vector operation error occured.

Notes: The input vector yout can use the same memory as the vector y0 of initial conditions that was passed to
ARKStepCreate ().

In ARK_ONE_STEP mode, tout is used only on the first call, and only to get the direction and a rough scale of
the independent variable. All failure return values are negative and so testing the return argument for negative
values will trap all ARKStepEvolve () failures.

Since interpolation may reduce the accuracy in the reported solution, if full method accuracy is desired the user
should issue a call to ARKStepSetStopTime () before the call to ARKStepEvolve () to specify a fixed
stop time to end the time step and return to the user. Upon return from ARKStepEvolve (), a copy of the
internal solution y,, will be returned in the vector yout. Once the integrator returns at a tstop time, any future
testing for tstop is disabled (and can be re-enabled only though a new call to ARKStepSetStopTime ()).

On any error return in which one or more internal steps were taken by ARKStepEvolve (), the returned values
of tret and yout correspond to the farthest point reached in the integration. On all other error returns, tret and
yout are left unchanged from those provided to the routine.

4.5.8 Optional input functions

There are numerous optional input parameters that control the behavior of the ARKStep solver, each of which may
be modified from its default value through calling an appropriate input function. The following tables list all optional

58 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

input functions, grouped by which aspect of ARKStep they control. Detailed information on the calling syntax and
arguments for each function are then provided following each table.

The optional inputs are grouped into the following categories:
* General ARKStep options (Optional inputs for ARKStep),
* IVP method solver options (Optional inputs for IVP method selection),
* Step adaptivity solver options (Optional inputs for time step adaptivity),
* Implicit stage solver options (Optional inputs for implicit stage solves),
* Linear solver interface options (Linear solver interface optional input functions),

For the most casual use of ARKStep, relying on the default set of solver parameters, the reader can skip to the following
section, User-supplied functions.

We note that, on an error return, all of the optional input functions send an error message to the error handler function.
We also note that all error return values are negative, so a test on the return arguments for negative values will catch

all errors.

Optional inputs for ARKStep

Optional input Function name Default
Return ARKStep solver parameters to their defaults | ARKStepSetDefaults () internal
Set dense output order ARKStepSetDenseOrder () 3

Supply a pointer to a diagnostics output file ARKStepSetDiagnostics () NULL
Supply a pointer to an error output file ARKStepSetErrFile () stderr
Supply a custom error handler function ARKStepSetErrHandlerFn () internal fn
Disable time step adaptivity (fixed-step mode) ARKStepSetFixedStep () disabled
Supply an initial step size to attempt ARKStepSetInitStep () estimated
Maximum no. of warnings for t,, + h = t,, ARKStepSetMaxHnilWarns () 10
Maximum no. of internal steps before fout ARKStepSetMaxNumSteps () 500
Maximum absolute step size ARKStepSetMaxStep () o0
Minimum absolute step size ARKStepSetMinStep () 0.0
Set a value for ¢4, ARKStepSetStopTime () 00
Supply a pointer for user data ARKStepSetUserData () NULL
Maximum no. of ARKStep error test failures ARKStepSetMaxErrTestFails () 7

Set ‘optimal’ adaptivity parameters for a method ARKStepSetOptimalParams () internal
Set inequality constraints on solution ARKStepSetConstraints () NULL

Set max number of constraint failures ARKStepSetMaxNumConstrFails () | 10

int ARKStepSetDefaults (void* arkode_mem)

Resets all optional input parameters to ARKStep’s original default values.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes: Does not change the user_data pointer or any parameters within the specified time-stepping module.

4.5. User-callable functions

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Also leaves alone any data structures or options related to root-finding (those can be reset using
ARKStepRootInit ()).

int ARKStepSetDenseOrder (void* arkode_mem, int dord)
Specifies the degree of the polynomial interpolant used for dense output (i.e. interpolation of solution output
values and implicit method predictors).

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* dord - requested polynomial order of accuracy.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value
Notes: Allowed values are between 0 and min (g, 5), where g is the order of the overall integration method.

int ARKStepSetDiagnostics (void* arkode_mem, FILE* diagfp)
Specifies the file pointer for a diagnostics file where all ARKStep step adaptivity and solver information is
written.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* diagfp — pointer to the diagnostics output file.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes: This parameter can be stdout or stderr, although the suggested approach is to specify a pointer to
a unique file opened by the user and returned by fopen. If not called, or if called with a NULL file pointer, all
diagnostics output is disabled.

When run in parallel, only one process should set a non-NULL value for this pointer, since statistics from all
processes would be identical.

int ARKStepSetErrFile (void* arkode_mem, FILE* errfp)
Specifies a pointer to the file where all ARKStep warning and error messages will be written if the default
internal error handling function is used.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* errfp — pointer to the output file.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

60 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Notes: The default value for errfp is stderr.

Passing a NULL value disables all future error message output (except for the case wherein the ARKStep memory
pointer is NULL). This use of the function is strongly discouraged.

If used, this routine should be called before any other optional input functions, in order to take effect for subse-
quent error messages.

int ARKStepSetErrHandlerFn (void* arkode_mem, ARKErrHandlerFn ehfun, void* eh_data)
Specifies the optional user-defined function to be used in handling error messages.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* ehfun — name of user-supplied error handler function.
* eh_data — pointer to user data passed to ehfun every time it is called.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes: Error messages indicating that the ARKStep solver memory is NULL will always be directed to stderr.

int ARKStepSetFixedStep (void* arkode_mem, realtype hfixed)
Disabled time step adaptivity within ARKStep, and specifies the fixed time step size to use for all internal steps.

Arguments:
e arkode_mem — pointer to the ARKStep memory block.
* hfixed — value of the fixed step size to use.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes: Pass 0.0 to return ARKStep to the default (adaptive-step) mode.

Use of this function is not recommended, since we it gives no assurance of the validity of the computed solutions.
It is primarily provided for code-to-code verification testing purposes.

When using ARKStepSetFixedStep (), any values providled to the functions
ARKStepSetInitStep (), ARKStepSetAdaptivityFn (), ARKStepSetMaxErrTestFails (),
ARKStepSetAdaptivityMethod (), ARKStepSetCFLFraction (), ARKStepSetErrorBias (),
ARKStepSetFixedStepBounds (), ARKStepSetMaxCFailGrowth (),
ARKStepSetMaxEFailGrowth (), ARKStepSetMaxFirstGrowth (),
ARKStepSetMaxGrowth (), ARKStepSetSafetyFactor (), ARKStepSetSmallNumEFails ()
and ARKStepSetStabilityFn () will be ignored, since temporal adaptivity is disabled.

If both ARKStepSetFixedStep () and ARKStepSetStopTime () are used, then the fixed step size will
be used for all steps until the final step preceding the provided stop time (which may be shorter). To resume
use of the previous fixed step size, another call to ARKStepSetFixedStep () must be made prior to calling
ARKStepEvolve () to resume integration.

4.5. User-callable functions 61

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

It is not recommended that ARKStepSetFixedStep () be used in concert with ARKStepSetMaxStep ()
or ARKStepSetMinStep (), since at best those latter two routines will provide no useful information to the
solver, and at worst they may interfere with the desired fixed step size.

int ARKStepSetInitStep (void* arkode_mem, realtype hin)
Specifies the initial time step size ARKStep should use after initialization or re-initialization.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* hin — value of the initial step to be attempted (£ 0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value
Notes: Pass 0.0 to use the default value.

2.
By default, ARKStep estimates the initial step size to be the solution h of the equation H h—;’ H = 1, where ¢ is
an estimated value of the second derivative of the solution at 70.

int ARKStepSetMaxHnilWarns (void* arkode_mem, int mxhnil)
Specifies the maximum number of messages issued by the solver to warn that ¢ + A = t on the next internal
step, before ARKStep will instead return with an error.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* mxhnil — maximum allowed number of warning messages (> 0).
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value
Notes: The default value is 10; set mxhnil to zero to specify this default.
A negative value indicates that no warning messages should be issued.

int ARKStepSetMaxNumSteps (void* arkode_mem, long int mxsteps)
Specifies the maximum number of steps to be taken by the solver in its attempt to reach the next output time,
before ARKStep will return with an error.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* mxsteps — maximum allowed number of internal steps.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes: Passing mxsteps = 0 results in ARKStep using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

62 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

int ARKStepSetMaxStep (void* arkode_mem, realtype hmax)
Specifies the upper bound on the magnitude of the time step size.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* hmax — maximum absolute value of the time step size (> 0).
Return value:

* ARK_SUCCESS if successful

e ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value
Notes: Pass hmax < 0.0 to set the default value of oco.

int ARKStepSetMinStep (void* arkode_mem, realtype hmin)
Specifies the lower bound on the magnitude of the time step size.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* hmin — minimum absolute value of the time step size (> 0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value
Notes: Pass himin < 0.0 to set the default value of 0.

int ARKStepSetStopTime (void* arkode_mem, realtype tstop)
Specifies the value of the independent variable ¢ past which the solution is not to proceed.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* tstop — stopping time for the integrator.
Return value:
e ARK _SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes: The default is that no stop time is imposed.

int ARKStepSetUserData (void* arkode_mem, void* user_data)
Specifies the user data block user_data and attaches it to the main ARKStep memory block.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* user_data — pointer to the user data.

Return value:

e ARK SUCCESS if successful

4.5. User-callable functions 63

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

* ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value

Notes: If specified, the pointer to user_data is passed to all user-supplied functions for which it is an argument;
otherwise NULL is passed.

If user_data is needed in user linear solver or preconditioner functions, the call to this function must be made
before the call to specify the linear solver.

int ARKStepSetMaxErrTestFails (void* arkode_mem, int maxnef)
Specifies the maximum number of error test failures permitted in attempting one step, before returning with an
error.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* maxnef — maximum allowed number of error test failures (> 0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value
Notes: The default value is 7; set maxnef < 0 to specify this default.

int ARKStepSetOptimalParams (void* arkode_mem)
Sets all adaptivity and solver parameters to our ‘best guess’ values, for a given integration method (ERK, DIRK,
ARK) and a given method order.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes: Should only be called after the method order and integration method have been set. These values
resulted from repeated testing of ARKStep’s solvers on a variety of training problems. However, all problems
are different, so these values may not be optimal for all users.

int ARKStepSetConstraints (void* arkode_mem, N_Vector constraints)
Specifies a vector defining inequality constraints for each component of the solution vector y.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* constraints — vector of constraint flags. If constraints[i] is

0.0 then no constraint is imposed on y;

1.0 then y; will be constrained to be y; > 0.0

-1.0 then y; will be constrained to be ; < 0.0

2.0 then y; will be constrained to be y; > 0.0

-2.0 then y; will be constrained to be y; < 0.0

64 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if the constraints vector contains illegal values

Notes: The presence of a non-NULL constraints vector that is not 0.0 in all components will cause constraint
checking to be performed. However, a call with 0.0 in all components of constraints will result in an illegal
input return. A NULL constraints vector will disable constraint checking.

Since constraint-handling is performed through cutting time steps that would violate the constraints, it is possible
that this feature will cause some problems to fail due to an inability to enforce constraints even at the minimum
time step size. Additionally, the features ARKStepSetConstraints () and ARKStepSetFixedStep ()

are incompatible, and should not be used simultaneously.

int ARKStepSetMaxNumConstrFails (void* arkode_mem, int maxfails)
Specifies the maximum number of constraint failures in a step before ARKStep will return with an error.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* maxfails — maximum allowed number of constrain failures.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
Notes: Passing maxfails <= 0 results in ARKStep using the default value (10).

Optional inputs for IVP method selection

Optional input Function name Default
Set integrator method order ARKStepSetOrder () 4

Specify implicit/explicit problem ARKStepSetImEx () SUNTRUE
Specify explicit problem ARKStepSetExplicit () | SUNFALSE
Specify implicit problem ARKStepSetImplicit () | SUNFALSE
Set additive RK tables ARKStepSetTables () internal
Specify additive RK table numbers | ARKStepSetTableNum () | internal

int ARKStepSetOrder (void* arkode_mem, int ord)
Specifies the order of accuracy for the ARK/DIRK/ERK integration method.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* ord — requested order of accuracy.

Return value:
* ARK_SUCCESS if successful
e ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value

Notes: For explicit methods, the allowed values are 2 < ord < 8. For implicit methods, the allowed values are
2 < ord < 5, and for ImEx methods the allowed values are 3 < ord < 5. Any illegal input will result in the
default value of 4.

4.5. User-callable functions 65

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Since ord affects the memory requirements for the internal ARKStep memory block, it cannot be changed after
the first call to ARKStepEvolve (), unless ARKStepReInit () is called.

int ARKStepSetImEx (void* arkode_mem)
Specifies that both the implicit and explicit portions of problem are enabled, and to use an additive Runge Kutta
method.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.
Return value:

e ARK SUCCESS if successful

e ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes: This is automatically deduced when neither of the function pointers fe or fi passed to
ARKStepCreate () are NULL, but may be set directly by the user if desired.

int ARKStepSetExplicit (void* arkode_mem)
Specifies that the implicit portion of problem is disabled, and to use an explicit RK method.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.
Return value:

* ARK_SUCCESS if successful

e ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes: This is automatically deduced when the function pointer fi passed to ARKStepCreate () is NULL, but
may be set directly by the user if desired.

If the problem is posed in explicit form, i.e. § = f(¢,y), then we recommend that the ERKStep time-stepper
module be used instead.

int ARKStepSetImplicit (void* arkode_mem)
Specifies that the explicit portion of problem is disabled, and to use a diagonally implicit RK method.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.
Return value:

* ARK_SUCCESS if successful

e ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes: This is automatically deduced when the function pointer fe passed to ARKStepCreate () is NULL,
but may be set directly by the user if desired.

int ARKStepSetTables (void* arkode_mem, int ¢, int p, ARKodeButcherTable Bi, ARKode-

ButcherTable Be)
Specifies a customized Butcher table (or pair) for the ERK, DIRK, or ARK method.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

66 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

¢ g — global order of accuracy for the ARK method.
* p — global order of accuracy for the embedded ARK method.
* Bi — the Butcher table for the implicit RK method.
* Be — the Butcher table for the explicit RK method.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes:

For a description of the ARKodeButcherTable type and related functions for creating Butcher tables see
Butcher Table Data Structure.

To set an explicit table, Bi must be NULL. This automatically calls ARKStepSetExplicit (). However,
if the problem is posed in explicit form, i.e. ¥ = f(¢,y), then we recommend that the ERKStep time-stepper
module be used instead of ARKStep.

To set an implicit table, Be must be NULL. This automatically calls ARKStepSet Implicit ().
If both Bi and Be are provided, this routine automatically calls ARKStepSet ImEx ().

When only one table is provided (i.e., Bi or Be is NULL) then the input values of g and p are ignored and the
global order of the method and embedding (if applicable) are obtained from the Butcher table structures. If both
Bi and Be are non-NULL (e.g, an IMEX method is provided) then the input values of ¢ and p are used as the
order of the ARK method may be less than the orders of the individual tables. No error checking is performed
to ensure that either p or g correctly describe the coefficients that were input.

Error checking is performed on Bi and Be (if non-NULL) to ensure that they specify DIRK and ERK methods,
respectively.

If the inputs Bi or Be do not contain an embedding (when the corresponding explicit or implicit table is non-
NULL), the user must call ARKStepSetFixedStep () to enable fixed-step mode and set the desired time
step size.

int ARKStepSetTableNum (void* arkode_mem, int itable, int etable)
Indicates to use specific built-in Butcher tables for the ERK, DIRK or ARK method.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* itable — index of the DIRK Butcher table.
* etable — index of the ERK Butcher table.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value
Notes:

The allowable values for both the itable and etable arguments corresponding to built-in tables may be found
Appendix: Butcher tables.

4.5. User-callable functions 67

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

To choose an explicit table, set itable to a negative value. This automatically calls ARKStepSetExplicit ().
However, if the problem is posed in explicit form, i.e. §y = f(¢,y), then we recommend that the ERKStep time-

stepper module be used instead of ARKStep.

To select an implicit table, set etable to a negative value. This automatically calls ARKStepSetImplicit ().

If both itable and etable are non-negative, then these should match an existing implicit/explicit pair, listed in the
section Additive Butcher tables. This automatically calls ARKStepSet ImEx ().

In all cases, error-checking is performed to ensure that the tables exist.

Optional inputs for time step adaptivity

The mathematical explanation of ARKode’s time step adaptivity algorithm, including how each of the parameters
below is used within the code, is provided in the section Time step adaptivity.

Optional input Function name Default
Set a custom time step adaptivity function ARKStepSetAdaptivityFn () internal
Choose an existing time step adaptivity method ARKStepSetAdaptivityMethod () | 0
Explicit stability safety factor ARKStepSetCFLFraction () 0.5
Time step error bias factor ARKStepSetErrorBias () 1.5
Bounds determining no change in step size ARKStepSetFixedStepBounds () 1.01.5
Maximum step growth factor on convergence fail | ARKStepSetMaxCFailGrowth () 0.25
Maximum step growth factor on error test fail ARKStepSetMaxEFailGrowth () 0.3
Maximum first step growth factor ARKStepSetMaxFirstGrowth () 10000.0
Maximum general step growth factor ARKStepSetMaxGrowth () 20.0
Time step safety factor ARKStepSetSafetyFactor () 0.96
Error fails before MaxEFailGrowth takes effect ARKStepSetSmallNumEFails () 2
Explicit stability function ARKStepSetStabilityFn () none

int ARKStepSetAdaptivityFn (void* arkode_mem, ARKAdaptFn hfun, void* h_data)
Sets a user-supplied time-step adaptivity function.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* hfun — name of user-supplied adaptivity function.

* h_data — pointer to user data passed to hfun every time it is called.

Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes: This function should focus on accuracy-based time step estimation; for stability based time steps the
function ARKStepSetStabilityFn () should be used instead.

int ARKStepSetAdaptivityMethod (void* arkode_mem, int imethod, int idefault,
type* adapt_params)
Specifies the method (and associated parameters) used for time step adaptivity.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

int pq, real-

* imethod — accuracy-based adaptivity method choice (0 < imethod < 5): 0is PID, 1 is PI, 2is I, 3 is
explicit Gustafsson, 4 is implicit Gustafsson, and 5 is the ImEx Gustafsson.

68

Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

* idefault — flag denoting whether to use default adaptivity parameters (1), or that they will be supplied
in the adapt_params argument (0).

* pg — flag denoting whether to use the embedding order of accuracy p (0) or the method order of
accuracy ¢ (1) within the adaptivity algorithm. p is the default.

* adapt_params[0] — k, parameter within accuracy-based adaptivity algorithms.

* adapt_params[1] — ko parameter within accuracy-based adaptivity algorithms.

* adapt_params([2] — k3 parameter within accuracy-based adaptivity algorithms.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes: If custom parameters are supplied, they will be checked for validity against published stability intervals.
If other parameter values are desired, it is recommended to instead provide a custom function through a call to
ARKStepSetAdaptivityFn ().

int ARKStepSetCFLFraction (void* arkode_mem, realtype cfl_frac)
Specifies the fraction of the estimated explicitly stable step to use.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* ¢fl_frac — maximum allowed fraction of explicitly stable step (default is 0.5).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value
Notes: Any non-positive parameter will imply a reset to the default value.

int ARKStepSetErrorBias (void* arkode_mem, realtype bias)
Specifies the bias to be applied to the error estimates within accuracy-based adaptivity strategies.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* bias — bias applied to error in accuracy-based time step estimation (default is 1.5).
Return value:

e ARK SUCCESS if successful

e ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value
Notes: Any value below 1.0 will imply a reset to the default value.

int ARKStepSetFixedStepBounds (void* arkode_mem, realtype Ib, realtype ub)
Specifies the step growth interval in which the step size will remain unchanged.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

4.5. User-callable functions 69

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

¢ [b —lower bound on window to leave step size fixed (default is 1.0).
* ub — upper bound on window to leave step size fixed (default is 1.5).
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes: Any interval not containing 1.0 will imply a reset to the default values.

int ARKStepSetMaxCFailGrowth (void* arkode_mem, realtype etacf)
Specifies the maximum step size growth factor upon an algebraic solver convergence failure on a stage solve
within a step.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* etacf — time step reduction factor on a nonlinear solver convergence failure (default is 0.25).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value
Notes: Any value outside the interval (0, 1] will imply a reset to the default value.

int ARKStepSetMaxEFailGrowth (void* arkode_mem, realtype etamxf)
Specifies the maximum step size growth factor upon multiple successive accuracy-based error failures in the
solver.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* etamxf — time step reduction factor on multiple error fails (default is 0.3).
Return value:

* ARK_SUCCESS if successful

e ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value
Notes: Any value outside the interval (0, 1] will imply a reset to the default value.

int ARKStepSetMaxFirstGrowth (void* arkode_mem, realtype etamxl)
Specifies the maximum allowed step size change following the very first integration step.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* etamx] — maximum allowed growth factor after the first time step (default is 10000.0).
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

70 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Notes: Any value < 1.0 will imply a reset to the default value.

int ARKStepSetMaxGrowth (void* arkode_mem, realtype mx_growth)
Specifies the maximum growth of the step size between consecutive steps in the integration process.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* growth — maximum allowed growth factor between consecutive time steps (default is 20.0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value
Notes: Any value < 1.0 will imply a reset to the default value.

int ARKStepSetSafetyFactor (void* arkode_mem, realtype safety)
Specifies the safety factor to be applied to the accuracy-based estimated step.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* safety — safety factor applied to accuracy-based time step (default is 0.96).
Return value:

* ARK_SUCCESS if successful

e ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value
Notes: Any non-positive parameter will imply a reset to the default value.

int ARKStepSetSmallNumEFails (void* arkode_mem, int small_nef')
Specifies the threshold for “multiple” successive error failures before the etamxf parameter from
ARKStepSetMaxEFailGrowth () is applied.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

e small_nef — bound to determine ‘multiple’ for efamxf (default is 2).
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value
Notes: Any non-positive parameter will imply a reset to the default value.

int ARKStepSetStabilityFn (void* arkode_mem, ARKExpStabFn EStab, void* estab_data)
Sets the problem-dependent function to estimate a stable time step size for the explicit portion of the ODE
system.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

» EStab — name of user-supplied stability function.

4.5. User-callable functions 71

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

* estab_data — pointer to user data passed to EStab every time it is called.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes: This function should return an estimate of the absolute value of the maximum stable time step for the
explicit portion of the ODE system. It is not required, since accuracy-based adaptivity may be sufficient for
retaining stability, but this can be quite useful for problems where the explicit right-hand side function (¢,)
may contain stiff terms.

Optional inputs for implicit stage solves

The mathematical explanation for the nonlinear solver strategies used by ARKStep, including how each of the param-
eters below is used within the code, is provided in the section Nonlinear solver methods.

Optional input Function name Default
Specify linearly implicit f7 ARKStepSetLinear () SUNFALSE
Specify nonlinearly implicit f7 ARKStepSetNonlinear () SUNTRUE
Implicit predictor method ARKStepSetPredictorMethod () | 0
Maximum number of nonlinear iterations ARKStepSetMaxNonlinIters () 3
Coefficient in the nonlinear convergence test | ARKStepSetNonlinConvCoef () 0.1
Nonlinear convergence rate constant ARKStepSetNonlinCRDown () 0.3
Nonlinear residual divergence ratio ARKStepSetNonlinRDiv () 2.3
Maximum number of convergence failures ARKStepSetMaxConvFails () 10
User-provided implicit stage predictor ARKStepSetStagePredictFn () NULL

int ARKStepSetLinear (void* arkode_mem, int timedepend)

Specifies that the implicit portion of the problem is linear.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.

e timedepend — flag denoting whether the Jacobian of f(¢,y) is time-dependent (1) or not (0). Alter-
nately, when using an iterative linear solver this flag denotes time dependence of the preconditioner.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes: Tightens the linear solver tolerances and takes only a single Newton iteration. Calls
ARKStepSetDeltaGammaMax () to enforce Jacobian recomputation when the step size ratio changes by
more than 100 times the unit roundoff (since nonlinear convergence is not tested). Only applicable when used
in combination with the modified or inexact Newton iteration (not the fixed-point solver).

The only SUNNonlinearSolver module that is compatible with the ARKStepSetLinear () option is the
Newton solver.

int ARKStepSetNonlinear (void* arkode_mem)

Specifies that the implicit portion of the problem is nonlinear.

Arguments:

72

Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

* arkode_mem — pointer to the ARKStep memory block.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes: This is the default behavior of ARKStep, so the function is primarily useful to undo a previous call to
ARKStepSetLinear (). Calls ARKStepSetDeltaGammaMax () to reset the step size ratio threshold to
the default value.

int ARKStepSetPredictorMethod (void* arkode_mem, int method)
Specifies the method to use for predicting implicit solutions.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

¢ method — method choice (0 < method < 4):

0 is the trivial predictor,

1 is the maximum order (dense output) predictor,

2 is the variable order predictor, that decreases the polynomial degree for more distant RK stages,

3 is the cutoff order predictor, that uses the maximum order for early RK stages, and a first-order
predictor for distant RK stages,

4 is the bootstrap predictor, that uses a second-order predictor based on only information within
the current step.

5 is the minimum correction predictor, that uses all preceding stage information within the current
step for prediction.

Return value:
e ARK SUCCESS if successful
e ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value
Notes: The default value is 0. If method is set to an undefined value, this default predictor will be used.

int ARKStepSetMaxNonlinIters (void* arkode_mem, int maxcor)
Specifies the maximum number of nonlinear solver iterations permitted per RK stage within each time step.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* maxcor — maximum allowed solver iterations per stage (> 0).
Return value:
* ARK_SUCCESS if successful
e ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value or if the SUNNONLINSOL module is NULL
* ARK_NLS_OP_ERR if the SUNNONLINSOL object returned a failure flag

Notes: The default value is 3; set maxcor < 0 to specify this default.

4.5. User-callable functions 73

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

int ARKStepSetNonlinConvCoef (void* arkode_mem, realtype nlscoef)
Specifies the safety factor used within the nonlinear solver convergence test.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nilscoef — coefficient in nonlinear solver convergence test (> 0.0).
Return value:

* ARK_SUCCESS if successful

e ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value
Notes: The default value is 0.1; set nlscoef < 0 to specify this default.

int ARKStepSetNonlinCRDown (void* arkode_mem, realtype crdown)
Specifies the constant used in estimating the nonlinear solver convergence rate.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* crdown — nonlinear convergence rate estimation constant (default is 0.3).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value
Notes: Any non-positive parameter will imply a reset to the default value.

int ARKStepSetNonlinRDiv (void* arkode_mem, realtype rdiv)
Specifies the nonlinear correction threshold beyond which the iteration will be declared divergent.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* rdiv — tolerance on nonlinear correction size ratio to declare divergence (default is 2.3).
Return value:

e ARK _SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value
Notes: Any non-positive parameter will imply a reset to the default value.

int ARKStepSetMaxConvFails (void* arkode_mem, int maxncf)
Specifies the maximum number of nonlinear solver convergence failures permitted during one step, before
ARKStep will return with an error.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* maxncf — maximum allowed nonlinear solver convergence failures per step (> 0).
Return value:

e ARK SUCCESS if successful

74 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

* ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes: The default value is 10; set maxncf < 0 to specify this default.

Upon each convergence failure, ARKStep will first call the Jacobian setup routine and try again (if a Newton
method is used). If a convergence failure still occurs, the time step size is reduced by the factor etacf (set within
ARKStepSetMaxCFailGrowth ()).

int ARKStepSetStagePredictFn (void* arkode_mem, ARKStepStagePredictFn PredictStage)
Sets the user-supplied function to update the implicit stage predictor prior to execution of the nonlinear or linear
solver algorithms that compute the implicit stage solution.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* PredictStage — name of user-supplied predictor function.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

Notes: See the section Implicit stage prediction function for more information on this user-supplied routine.

Linear solver interface optional input functions

The mathematical explanation of the linear solver methods available to ARKStep is provided in the section Linear
solver methods. We group the user-callable routines into four categories: general routines concerning the update
frequency for matrices and/or preconditioners, optional inputs for matrix-based linear solvers, optional inputs for
matrix-free linear solvers, and optional inputs for iterative linear solvers. We note that the matrix-based and matrix-
free groups are mutually exclusive, whereas the “iterative” tag can apply to either case.

Optional inputs for the ARKLs linear solver interface

As discussed in the section Updating the linear solver, ARKode strives to reuse matrix and preconditioner data for

as many solves as possible to amortize the high costs of matrix construction and factorization. To that end, ARKStep

provides three user-callable routines to modify this behavior. To this end, we recall that the Newton system matrices

that arise within an implicit stage solve are A(t, z) ~ M — vJ(t, z), where the implicit right-hand side function has
af!(t.2)

Jacobian matrix J(t, z) = =5,

The matrix or preconditioner for A can only be updated within a call to the linear solver ‘setup’ routine. In gen-
eral, the frequency with which the linear solver setup routine is called may be controlled with the msbp argument
to ARKStepSetMaxStepsBetweenLSet (). When this occurs, the validity of A for successive time steps inti-
mately depends on whether the corresponding ~ and J inputs remain valid.

If the current value of + is ever too far from the value used when constructing .4, then it is considered invalid and the
linear solver setup routine is called. For linear solvers with user-supplied preconditioning, the input jok is then set to
SUNFALSE in calling the user-supplied ARKLsPrecSetupFn (), to recommend a preconditioner update.

It is more difficult to automatically and efficiently determine the validity of J (unless the nonlinear solver fails to
converge). To this end, we automatically update J at a user-defined frequency, controlled with the msbj argument to
ARKStepSetMaxStepsBetweendJdac (). We note that this is only checked within calls to the linear solver setup
routine, so values msbj < msbp do not make sense.

4.5. User-callable functions 75

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

For linear solvers with user-supplied preconditioning: at each call to the linear solver setup routine, msbj is used
to determine whether to recommend a preconditioner update (i.e., whether to set jok to SUNFALSE in calling the
user-supplied ARKLsPrecSetupFn ()).

For matrix-based linear solvers: at each call to the linear solver setup routine, msbj is used to determine whether
the matrix J(¢t,y) = %(yt’y) should be updated; if not then the previous value is reused and the system matrix
A(t,y) = M — ~J(t,y) is recomputed using the current +y value.

Optional input Function name Default
Max change in step signaling new .J ARKStepSetDeltaGammaMax () 0.2
Max steps between calls to “Isetup” routine | ARKStepSetMaxStepsBetweenLSet () | 20
Max steps between calls to new J ARKStepSetMaxStepsBetweendJdac () 50

int ARKStepSetDeltaGammaMax (void* arkode_mem, realtype dgmax)
Specifies a scaled step size ratio tolerance, beyond which the linear solver setup routine will be signaled.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* dgmax — tolerance on step size ratio change before calling linear solver setup routine (default is 0.2).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value
Notes: Any non-positive parameter will imply a reset to the default value.

int ARKStepSetMaxStepsBetweenLSet (void* arkode_mem, int msbp)
Specifies the frequency of calls to the linear solver setup routine. Positive values specify the number of time
steps between setup calls; negative values force recomputation at each stage solve; zero values reset to the

default.
Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* msbp — maximum number of time steps between linear solver setup calls, or flag to force recomputa-
tion at each stage solve (default is 20).

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL

int ARKStepSetMaxStepsBetweenJac (void* arkode_mem, long int msbj)
Specifies the maximum number of time steps to wait before recomputation of the Jacobian or recommendation

to update the preconditioner.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* msbj — maximum number of time steps between Jacobian or preconditioner updates (default is 50).
Return value:

e ARKLS SUCCESS if successful.

* ARKLS_MEM_NULL if the ARKStep memory was NULL.

76 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

* ARKLS_LMEM_NULL if the linear solver memory was NULL.
* ARKLS_ILL_INPUT if an input has an illegal value.
Notes: Passing a value msbj < 0 indicates to use the default value of 50.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver ().

Optional inputs for matrix-based SUNLinearSolver modules

Optional input Function name Default
Jacobian function ARKStepSetJacFn () DQ
Linear system function | ARKStepSetLinSysFn () | internal
Mass matrix function ARKStepSetMassFn () none

When using matrix-based linear solver modules, the ARKLS solver interface needs a function to compute an approx-
imation to the Jacobian matrix J(¢,y) or the linear system M — ~.J. The function to evaluate the Jacobian must
be of type ARKLsJacFn (). The user can supply a custom Jacobian function, or if using a dense or banded J can
use the default internal difference quotient approximation that comes with the ARKLS interface. At present, we do
not supply a corresponding routine to approximate Jacobian entries in sparse matrices J. To specify a user-supplied
Jacobian function jac, ARKStep provides the function ARKStepSetJacFn (). Alternatively, a function of type
ARKLsLinSysFn () can be provided to evaluate the linear system M — ~.J. By default, ARKLS uses an internal
linear system function leveraging the SUNMATRIX API to form the system M = I — ~J. To specify a user-supplied
linear system function linsys, ARKStep provides the function ARKStepSetLinSysFn ().

The ARKLS interface passes the user data pointer to the Jacobian and linear system functions. This allows the user to
create an arbitrary structure with relevant problem data and access it during the execution of the user-supplied Jacobian
or linear system functions, without using global data in the program. The user data pointer may be specified through
ARKStepSetUserData ().

Similarly, if the ODE system involves a non-identity mass matrix, M # I, matrix-based linear solver modules require
a function to compute an approximation to the mass matrix M. There is no default difference quotient approximation
(for any matrix type), so this routine must be supplied by the user. This function must be of type ARKLsMassFn (),
and should be set using the function ARKStepSetMassFn (). We note that the ARKLS solver passes the user data
pointer to the mass matrix function. This allows the user to create an arbitrary structure with relevant problem data
and access it during the execution of the user-supplied mass matrix function, without using global data in the program.
The pointer user data may be specified through ARKStepSetUserData ().

int ARKStepSetJacFn (void* arkode_mem, ARKLsJacFn jac)
Specifies the Jacobian approximation routine to be used for the matrix-based solver with the ARKLS interface.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

e jac — name of user-supplied Jacobian approximation function.
Return value:

e ARKLS SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This routine must be called after the ARKLS linear solver interface has been initialized through a call to
ARKStepSetLinearSolver ().

By default, ARKLS uses an internal difference quotient function for dense and band matrices. If NULL is passed
in for jac, this default is used. An error will occur if no jac is supplied when using other matrix types.

4.5. User-callable functions 77

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

The function type ARKLsJacFn () is described in the section User-supplied functions.

int ARKStepSetLinSysFn (void* arkode_mem, ARKLsLinSysFn linsys)
Specifies the linear system approximation routine to be used for the matrix-based solver with the ARKLS inter-
face.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* linsys — name of user-supplied linear system approximation function.
Return value:

e ARKLS SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This routine must be called after the ARKLS linear solver interface has been initialized through a call to
ARKStepSetLinearSolver ().

By default, ARKLS uses an internal linear system function that leverages the SUNMATRIX API to form the
system M — ~J. If NULL is passed in for linsys, this default is used.

The function type ARKLsLinSysFn () is described in the section User-supplied functions.

int ARKStepSetMassFn (void* arkode_mem, ARKLsMassFn mass)
Specifies the mass matrix approximation routine to be used for the matrix-based solver with the ARKLS inter-
face.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* mass — name of user-supplied mass matrix approximation function.
Return value:

e ARKLS SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_MASSMEM_NULL if the mass matrix solver memory was NULL

* ARKLS_ILL_INPUT if an argument has an illegal value

Notes: This routine must be called after the ARKLS mass matrix solver interface has been initialized through a
call to ARKStepSetMassLinearSolver ().

Since there is no default difference quotient function for mass matrices, mass must be non-NULL.

The function type ARKLsMassFEn () is described in the section User-supplied functions.

Optional inputs for matrix-free SUNLinearSolver modules

Optional input Function name Default
Jv functions (jtimes and jtsetup) ARKStepSetJacTimes () DQ, none
Mw functions (mtimes and mtsetup) | ARKStepSetMassTimes () | none, none

As described in the section Linear solver methods, when solving the Newton linear systems with matrix-free methods,
the ARKLS interface requires a jtimes function to compute an approximation to the product between the Jacobian ma-
trix J(¢, y) and a vector v. The user can supply a custom Jacobian-times-vector approximation function, or use the de-
fault internal difference quotient function that comes with the ARKLS interface. A user-defined Jacobian-vector func-

78 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

tion must be of type ARKLsJacTimesVecFn and can be specified through a call to ARKStepSetJacTimes ()
(see the section User-supplied functions for specification details). As with the user-supplied preconditioner functions,
the evaluation and processing of any Jacobian-related data needed by the user’s Jacobian-times-vector function is done
in the optional user-supplied function of type ARKLsJacTimesSetupFn (see the section User-supplied functions
for specification details). As with the preconditioner functions, a pointer to the user-defined data structure, user_data,
specified through ARKStepSetUserData () (or a NULL pointer otherwise) is passed to the Jacobian-times-vector
setup and product functions each time they are called.

Similarly, if a problem involves a non-identity mass matrix, M # I, then matrix-free solvers require a mtimes function
to compute an approximation to the product between the mass matrix M and a vector v. This function must be user-
supplied, since there is no default value. mtimes must be of type ARKLsMassTimesVecFn (), and can be specified
through a call to the ARKStepSetMassTimes () routine. As with the user-supplied preconditioner functions, the
evaluation and processing of any mass matrix-related data needed by the user’s mass-matrix-times-vector function
is done in the optional user-supplied function of type ARKL.sMassTimesSetupFn (see the section User-supplied
Junctions for specification details).

int ARKStepSetJacTimes (void* arkode_mem, ARKLsJacTimesSetupFn jtsetup, ARKLsJac-
TimesVecFn jtimes)
Specifies the Jacobian-times-vector setup and product functions.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* jtsetup — user-defined Jacobian-vector setup function. Pass NULL if no setup is necessary.
* jtimes — user-defined Jacobian-vector product function.
Return value:
e ARKLS SUCCESS if successful.
ARKLS MEM_NULL if the ARKStep memory was NULL.
ARKLS_LMEM_NULL if the linear solver memory was NULL.

ARKLS_ILL_INPUT if an input has an illegal value.

ARKLS_SUNLS_FAIL if an error occurred when setting up the Jacobian-vector product in the
SUNLinearSolver object used by the ARKLS interface.

Notes: The default is to use an internal finite difference quotient for jtimes and to leave out jtsetup. If NULL is
passed to jtimes, these defaults are used. A user may specify non-NULL jtimes and NULL jtsetup inputs.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver ().

The function types ARKLsJacTimesSetupFn and ARKLsJacTimesVecFn are described in the section
User-supplied functions.

int ARKStepSetMassTimes (void* arkode_mem, ARKLsMassTimesSetupFn — mtsetup, ARKLs-

MassTimesVecFn mtimes, void* mtimes_data)
Specifies the mass matrix-times-vector setup and product functions.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
» mtsetup — user-defined mass matrix-vector setup function. Pass NULL if no setup is necessary.
o mtimes — user-defined mass matrix-vector product function.
* mtimes_data — a pointer to user data, that will be supplied to both the mtsetup and mtimes functions.

Return value:

4.5. User-callable functions 79

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

ARKLS SUCCESS if successful.
ARKLS MEM_NULL if the ARKStep memory was NULL.

* ARKLS_MASSMEM_NULL if the mass matrix solver memory was NULL.

ARKLS_ILL_INPUT if an input has an illegal value.

ARKLS _SUNLS_FAIL if an error occurred when setting up the mass-matrix-vector product in the
SUNLinearSolver object used by the ARKLS interface.

Notes: There is no default finite difference quotient for mtimes, so if using the ARKLS mass matrix solver
interface with NULL-valued M, and this routine is called with NULL-valued mtimes, an error will occur. A
user may specify NULL for mtsetup.

This function must be called after the ARKLS mass matrix solver interface has been initialized through a call
to ARKStepSetMassLinearSolver ().

The function types ARKLsMassTimesSetupFnand ARKLsMassTimesVecFn are described in the section
User-supplied functions.

Optional inputs for iterative SUNLinearSolver modules

Optional input Function name Default
Newton preconditioning functions ARKStepSetPreconditioner () NULL, NULL
Mass matrix preconditioning functions ARKStepSetMassPreconditioner () | NULL, NULL
Newton linear and nonlinear tolerance ratio ARKStepSetEpsLin () 0.05

Mass matrix linear and nonlinear tolerance ratio | ARKStepSetMassEpsLin () 0.05

As described in the section Linear solver methods, when using an iterative linear solver the user may supply a pre-
conditioning operator to aid in solution of the system. This operator consists of two user-supplied functions, psetup
and psolve, that are supplied to ARKStep using either the function ARKStepSetPreconditioner () (for pre-
conditioning the Newton system), or the function ARKStepSetMassPreconditioner () (for preconditioning
the mass matrix system). The psefup function supplied to these routines should handle evaluation and preprocessing
of any Jacobian or mass-matrix data needed by the user’s preconditioner solve function, psolve. The user data pointer
received through ARKStepSetUserData () (or a pointer to NULL if user data was not specified) is passed to the
psetup and psolve functions. This allows the user to create an arbitrary structure with relevant problem data and access
it during the execution of the user-supplied preconditioner functions without using global data in the program. If pre-
conditioning is supplied for both the Newton and mass matrix linear systems, it is expected that the user will supply
different psetup and psolve function for each.

Also, as described in the section Linear iteration error control, the ARKLS interface requires that iterative linear
solvers stop when the norm of the preconditioned residual satisfies

2%
10
where the default e;, = 0.05, which may be modified by the user through the ARKStepSetEpsLin () function.

Il <

int ARKStepSetPreconditioner (void* arkode_mem, ARKLsPrecSetupFn psetup, ARKLsPrec-

SolveFn psolve)
Specifies the user-supplied preconditioner setup and solve functions.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
e psetup — user defined preconditioner setup function. Pass NULL if no setup is needed.
* psolve — user-defined preconditioner solve function.

Return value:

80 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

ARKLS SUCCESS if successful.
ARKLS MEM_NULL if the ARKStep memory was NULL.

ARKLS_LMEM_NULL if the linear solver memory was NULL.
ARKLS_ILL_INPUT if an input has an illegal value.

ARKLS SUNLS_FAIL if an error occurred when setting up preconditioning in the
SUNLinearSolver object used by the ARKLS interface.

Notes: The default is NULL for both arguments (i.e., no preconditioning).

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver ().

Both of the function types ARKLsPrecSetupFn () and ARKLsPrecSolveFn () are described in the sec-
tion User-supplied functions.

int ARKStepSetMassPreconditioner (void* arkode_mem, ARKLsMassPrecSetupFn psetup, ARKLs-

MassPrecSolveFn psolve)
Specifies the mass matrix preconditioner setup and solve functions.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* psetup — user defined preconditioner setup function. Pass NULL if no setup is to be done.
* psolve — user-defined preconditioner solve function.
Return value:
e ARKLS SUCCESS if successful.
ARKLS MEM_NULL if the ARKStep memory was NULL.

ARKLS_LMEM_NULL if the linear solver memory was NULL.
ARKLS_ILL_INPUT if an input has an illegal value.

ARKLS _SUNLS _FAIL if an error occurred when setting up preconditioning in the
SUNLinearSolver object used by the ARKLS interface.

Notes: This function must be called after the ARKLS mass matrix solver interface has been initialized through
acall to ARKStepSetMassLinearSolver ().

The default is NULL for both arguments (i.e. no preconditioning).

Both of the function types ARKLsMassPrecSetupFn () and ARKLsMassPrecSolveFn () are described
in the section User-supplied functions.

int ARKStepSetEpsLin (void* arkode_mem, realtype eplifac)
Specifies the factor by which the tolerance on the nonlinear iteration is multiplied to get a tolerance on the linear
iteration.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
e eplifac — linear convergence safety factor.
Return value:
e ARKLS SUCCESS if successful.
* ARKLS_MEM_NULL if the ARKStep memory was NULL.
* ARKLS_LMEM_NULL if the linear solver memory was NULL.

4.5. User-callable functions 81

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

e ARKLS_ILL_INPUT if an input has an illegal value.
Notes: Passing a value eplifac < 0 indicates to use the default value of 0.05.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver ().

int ARKStepSetMassEpsLin (void* arkode_mem, realtype eplifac)
Specifies the factor by which the tolerance on the nonlinear iteration is multiplied to get a tolerance on the mass
matrix linear iteration.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* eplifac — linear convergence safety factor.
Return value:
e ARKLS SUCCESS if successful.
* ARKLS_MEM_NULL if the ARKStep memory was NULL.
* ARKLS_MASSMEM_NULL if the mass matrix solver memory was NULL.
* ARKLS_ILL_INPUT if an input has an illegal value.

Notes: This function must be called after the ARKLS mass matrix solver interface has been initialized through
acall to ARKStepSetMassLinearSolver ().

Passing a value eplifac < 0 indicates to use the default value of 0.05.

Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm, the mathematics of
which are described in the section Rootfinding.

Optional input Function name Default
Direction of zero-crossings to monitor | ARKStepSetRootDirection () both
Disable inactive root warnings ARKStepSetNoInactiveRootWarn () | enabled

int ARKStepSetRootDirection (void* arkode_mem, int* rootdir)
Specifies the direction of zero-crossings to be located and returned.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* rootdir — state array of length nrtfn, the number of root functions g; (the value of nrtfn was supplied
in the call to ARKStepRootInit ()). If rootdir[i] == O then crossing in either direction for
g; should be reported. A value of +1 or -1 indicates that the solver should report only zero-crossings
where g; is increasing or decreasing, respectively.

Return value:
* ARK_SUCCESS if successful
e ARK_MEM_NULL if the ARKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes: The default behavior is to monitor for both zero-crossing directions.

int ARKStepSetNoInactiveRootWarn (void* arkode_mem)
Disables issuing a warning if some root function appears to be identically zero at the beginning of the integration.

82 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Arguments:

* arkode_mem — pointer to the ARKStep memory block.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

Notes: ARKStep will not report the initial conditions as a possible zero-crossing (assuming that one or more
components g; are zero at the initial time). However, if it appears that some g; is identically zero at the initial
time (i.e., g; is zero at the initial time and after the first step), ARKStep will issue a warning which can be
disabled with this optional input function.

4.5.9 Interpolated output function

An optional function ARKStepGetDky () is available to obtain additional values of solution-related quantities. This
function should only be called after a successful return from ARKStepEvolve (), as it provides interpolated values
either of y or of its derivatives (up to the 5th derivative) interpolated to any value of ¢ in the last internal step taken
by ARKStepEvolve (). Internally, this dense output algorithm is identical to the algorithm used for the maximum
order implicit predictors, described in the section Maximum order predictor, except that derivatives of the polynomial
model may be evaluated upon request.

int ARKStepGetDky (void* arkode_mem, realtype t, int k, N_Vector dky)

Computes the k-th derivative of the function y at the time , i.e. %y(t), for values of the independent variable
satisfying t,, — h,, < t < t,,, with ¢,, as current internal time reached, and h,, is the last internal step size suc-
cessfully used by the solver. This routine uses an interpolating polynomial of degree max(dord, k), where dord is
the argument provided to ARKStepSetDenseOrder (). The user may request & in the range {0,...,*dord*}.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* ¢t —the value of the independent variable at which the derivative is to be evaluated.
* k — the derivative order requested.
* dky — output vector (must be allocated by the user).
Return value:
* ARK_SUCCESS if successful
* ARK_BAD_K if k is not in the range {0,...,*dord*}.
* ARK_BAD_T if t is not in the interval [t,, — hy,, t,]
* ARK_BAD_DKY if the dky vector was NULL
* ARK_MEM_NULL if the ARKStep memory is NULL
Notes: It is only legal to call this function after a successful return from ARKStepEvolve ().

A user may access the values ¢, and h, via the functions ARKStepGetCurrentTime () and
ARKStepGetLastStep (), respectively.

4.5.10 Optional output functions

ARKStep provides an extensive set of functions that can be used to obtain solver performance information. We
organize these into groups:

4.5. User-callable functions 83

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

AN U T

SUNDIALS version information accessor routines are in the subsection SUNDIALS version information,
General ARKStep output routines are in the subsection Main solver optional output functions,

ARKStep implicit solver output routines are in the subsection Implicit solver optional output functions,
Output routines regarding root-finding results are in the subsection Rootfinding optional output functions,
Linear solver output routines are in the subsection Linear solver interface optional output functions and

General usability routines (e.g. to print the current ARKStep parameters, or output the current Butcher table(s))
are in the subsection General usability functions.

Following each table, we elaborate on each function.

Some of the optional outputs, especially the various counters, can be very useful in determining the efficiency of
various methods inside ARKStep. For example:

The counters nsteps, nfe_evals, nfi_evals and nf_evals provide a rough measure of the overall cost of a given
run, and can be compared between runs with different solver options to suggest which set of options is the most
efficient.

The ratio nniters/nsteps measures the performance of the nonlinear iteration in solving the nonlinear systems at
each stage, providing a measure of the degree of nonlinearity in the problem. Typical values of this for a Newton
solver on a general problem range from 1.1 to 1.8.

When using a Newton nonlinear solver, the ratio njevals/nniters (in the case of a direct linear solver), and the
ratio npevals/nniters (in the case of an iterative linear solver) can measure the overall degree of nonlinearity in
the problem, since these are updated infrequently, unless the Newton method convergence slows.

When using a Newton nonlinear solver, the ratio njevals/nniters (when using a direct linear solver), and the
ratio nliters/nniters (when using an iterative linear solver) can indicate the quality of the approximate Jacobian
or preconditioner being used. For example, if this ratio is larger for a user-supplied Jacobian or Jacobian-
vector product routine than for the difference-quotient routine, it can indicate that the user-supplied Jacobian is
Inaccurate.

The ratio expsteps/accsteps can measure the quality of the ImEx splitting used, since a higher-quality splitting
will be dominated by accuracy-limited steps.

The ratio nsteps/step_attempts can measure the quality of the time step adaptivity algorithm, since a poor algo-
rithm will result in more failed steps, and hence a lower ratio.

It is therefore recommended that users retrieve and output these statistics following each run, and take some time to
investigate alternate solver options that will be more optimal for their particular problem of interest.

SUNDIALS version information

The following functions provide a way to get SUNDIALS version information at runtime.

int SUNDIALSGetVersion (char *version, int len)

This routine fills a string with SUNDIALS version information.

Arguments:
* version — character array to hold the SUNDIALS version information.
* [en — allocated length of the version character array.

Return value:
* 0 if successful

* -1 if the input string is too short to store the SUNDIALS version

84

Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Notes: An array of 25 characters should be sufficient to hold the version information.

int SUNDIALSGetVersionNumber (int *major, int *minor, int *patch, char *label, int len)
This routine sets integers for the SUNDIALS major, minor, and patch release numbers and fills a string with the

release label if applicable.

Arguments:

* major — SUNDIALS release major version number.

e minor — SUNDIALS release minor version number.

 patch — SUNDIALS release patch version number.
* label — string to hold the SUNDIALS release label.

¢ len — allocated length of the label character array.

Return value:

¢ (if successful

* -1 if the input string is too short to store the SUNDIALS label

Notes: An array of 10 characters should be sufficient to hold the label information. If a label is not used in the
release version, no information is copied to label.

Main solver optional output functions

Optional output

Function name

Size of ARKStep real and integer workspaces

ARKStepGetWorkSpace ()

Cumulative number of internal steps

ARKStepGetNumSteps ()

Actual initial time step size used

ARKStepGetActualInitStep ()

Step size used for the last successful step

ARKStepGetLastStep ()

Step size to be attempted on the next step

ARKStepGetCurrentStep ()

Current internal time reached by the solver

ARKStepGetCurrentTime ()

Suggested factor for tolerance scaling

ARKStepGetTolScaleFactor ()

Error weight vector for state variables

ARKStepGetErriWeights ()

Residual weight vector

ARKStepGetResWeights ()

Single accessor to many statistics at once

ARKStepGetStepStats ()

Name of constant associated with a return flag

ARKStepGetReturnFlagName ()

No. of explicit stability-limited steps

ARKStepGetNumExpSteps ()

No. of accuracy-limited steps

ARKStepGetNumAccSteps ()

No. of attempted steps

ARKStepGetNumStepAttempts ()

No. of calls to fe and fi functions

ARKStepGetNumRhsEvals ()

No. of local error test failures that have occurred

ARKStepGetNumErrTestFails ()

Current ERK and DIRK Butcher tables

ARKStepGetCurrentButcherTables ()

Estimated local truncation error vector

ARKStepGetEstLocalErrors ()

Single accessor to many statistics at once

ARKStepGetTimestepperStats ()

Number of constraint test failures

ARKStepGetNumConstrFails ()

int ARKStepGetWorkSpace (void* arkode_mem, long int* lenrw, long int* leniw)
Returns the ARKStep real and integer workspace sizes.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* lenrw — the number of realtype values in the ARKStep workspace.

4.5. User-callable functions

85

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

¢ leniw — the number of integer values in the ARKStep workspace.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetNumSteps (void* arkode_mem, long int* nsteps)
Returns the cumulative number of internal steps taken by the solver (so far).

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* nsteps — number of steps taken in the solver.
Return value:
e ARK SUCCESS if successful
e ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetActualInitStep (void* arkode_mem, realtype* hinused)
Returns the value of the integration step size used on the first step.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* hinused — actual value of initial step size.
Return value:
e ARK SUCCESS if successful
e ARK_MEM_NULL if the ARKStep memory was NULL

Notes: Even if the value of the initial integration step was specified by the user through a call to
ARKStepSetInitStep (), this value may have been changed by ARKStep to ensure that the step size fell
within the prescribed bounds (hyin < ho < himaz), or to satisfy the local error test condition, or to ensure
convergence of the nonlinear solver.

int ARKStepGetLastStep (void* arkode_mem, realtype* hlast)
Returns the integration step size taken on the last successful internal step.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* hlast — step size taken on the last internal step.
Return value:
e ARK SUCCESS if successful
e ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetCurrentStep (void* arkode_mem, realtype* hcur)
Returns the integration step size to be attempted on the next internal step.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* hcur — step size to be attempted on the next internal step.

Return value:

86 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0

(SUNDIALS v5.1.0),

e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetCurrentTime (void* arkode_mem, realtype* tcur)
Returns the current internal time reached by the solver.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* tcur — current internal time reached.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetTolScaleFactor (void* arkode_mem, realtype* tolsfac)

Returns a suggested factor by which the user’s tolerances should be scaled when too much accuracy has been

requested for some internal step.
Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* tolsfac — suggested scaling factor for user-supplied tolerances.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetErrWeights (void* arkode_mem, N_Vector eweight)
Returns the current error weight vector.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* eweight — solution error weights at the current time.
Return value:
* ARK_SUCCESS if successful
e ARK_MEM_NULL if the ARKStep memory was NULL

Notes: The user must allocate space for eweight, that will be filled in by this function.

int ARKStepGetResWeights (void* arkode_mem, N_Vector rweight)
Returns the current residual weight vector.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* rweight — residual error weights at the current time.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL

Notes: The user must allocate space for rweight, that will be filled in by this function.

4.5. User-callable functions

87

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

int ARKStepGetStepStats (void* arkode_mem, long int* nsteps, realtype* hinused, realtype* hlast, real-

type* hcur, realtype™* tcur)
Returns many of the most useful optional outputs in a single call.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* nsteps — number of steps taken in the solver.
* hinused — actual value of initial step size.
* hlast — step size taken on the last internal step.
* hcur — step size to be attempted on the next internal step.
* fcur — current internal time reached.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL

char *ARKStepGetReturnFlagName (long int flag)
Returns the name of the ARKStep constant corresponding to flag.

Arguments:
* flag — areturn flag from an ARKStep function.
Return value: The return value is a string containing the name of the corresponding constant.

int ARKStepGetNumExpSteps (void* arkode_mem, long int* expsteps)
Returns the cumulative number of stability-limited steps taken by the solver (so far).

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* expsteps — number of stability-limited steps taken in the solver.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetNumAccSteps (void* arkode_mem, long int* accsteps)
Returns the cumulative number of accuracy-limited steps taken by the solver (so far).

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* accsteps — number of accuracy-limited steps taken in the solver.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetNumStepAttempts (void* arkode_mem, long int* step_attempts)
Returns the cumulative number of steps attempted by the solver (so far).

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

88 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

* step_attempts — number of steps attempted by solver.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetNumRhsEvals (void* arkode_mem, long int* nfe_evals, long int* nfi_evals)
Returns the number of calls to the user’s right-hand side functions, f¥ and f! (so far).

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* nfe_evals — number of calls to the user’s (¢, y) function.
* nfi_evals — number of calls to the user’s f(t,y) function.
Return value:
e ARK _SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
Notes: The nfi_evals value does not account for calls made to f! by a linear solver or preconditioner module.

int ARKStepGetNumErrTestFails (void* arkode_mem, long int* netfails)
Returns the number of local error test failures that have occurred (so far).

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* netfails — number of error test failures.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetCurrentButcherTables (void* arkode_mem, ARKodeButcherTable *Bi, ARKodep-

ButcherTable *Be)
Returns the explicit and implicit Butcher tables currently in use by the solver.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* Bi — pointer to implicit Butcher table structure.
* Be — pointer to explicit Butcher table structure.
Return value:
e ARK _SUCCESS if successful
e ARK_MEM_NULL if the ARKStep memory was NULL

Notes: The ARKodeButcherTable data structure is defined as a pointer to the following C structure:

typedef struct ARKStepButcherTableMem ({

int g /+ method order of accuracy */
int p; /* embedding order of accuracy */
int stages; /* number of stages */
realtype *+*A; /+ Butcher table coefficients */
realtype =c; /#* canopy node coefficients */

4.5. User-callable functions 89

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

realtype *b; /* root node coefficients */
realtype =*d; /+* embedding coefficients */

} x*ARKStepButcherTable;

For more details see Butcher Table Data Structure.

int ARKStepGetEstLocalErrors (void* arkode_mem, N_Vector ele)
Returns the vector of estimated local truncation errors for the current step.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* ele — vector of estimated local truncation errors.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
Notes: The user must allocate space for ele, that will be filled in by this function.

The values returned in ele are valid only after a successful call to ARKStepEvolve () (i.e. it returned a
non-negative value).

The ele vector, together with the eweight vector from ARKStepGetErrieights (), canbe used to determine
how the various components of the system contributed to the estimated local error test. Specifically, that error
test uses the WRMS norm of a vector whose components are the products of the components of these two
vectors. Thus, for example, if there were recent error test failures, the components causing the failures are those
with largest values for the products, denoted loosely as eweight [i] xele[1i].

int ARKStepGetTimestepperStats (void* arkode_mem, long int* expsteps, long int* accsteps, long
int* step_attempts, long int* nfe_evals, long int* nfi_evals, long

int* nlinsetups, long int* netfails)

Returns many of the most useful time-stepper statistics in a single call.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* expsteps — number of stability-limited steps taken in the solver.
* accsteps — number of accuracy-limited steps taken in the solver.
* step_attempts — number of steps attempted by the solver.
* nfe_evals — number of calls to the user’s f¥(t,y) function.
* nfi_evals — number of calls to the user’s f7(¢,y) function.
* nlinsetups — number of linear solver setup calls made.
* netfails — number of error test failures.
Return value:
e ARK SUCCESS if successful
e ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetNumConstrFails (void* arkode_mem, long int* nconstrfails)
Returns the cumulative number of constraint test failures (so far).

Arguments:

920 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

* arkode_mem — pointer to the ARKStep memory block.

* nconstrfails — number of constraint test failures.
Return value:

e ARK SUCCESS if successful

e ARK_MEM_NULL if the ARKStep memory was NULL

Implicit solver optional output functions

Optional output Function name

No. of calls to linear solver setup function ARKStepGetNumLinSolvSetups ()

No. of nonlinear solver iterations ARKStepGetNumNonlinSolvIters ()

No. of nonlinear solver convergence failures ARKStepGetNumNonlinSolvConvFails ()
Single accessor to all nonlinear solver statistics | ARKStepGetNonlinSolvStats ()

int ARKStepGetNumLinSolvSetups (void* arkode_mem, long int* nlinsetups)
Returns the number of calls made to the linear solver’s setup routine (so far).

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* nlinsetups — number of linear solver setup calls made.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL

Notes: This is only accumulated for the ‘life’ of the nonlinear solver object; the counter is reset whenever a new
nonlinear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

int ARKStepGetNumNonlinSolvIters (void* arkode_mem, long int* nniters)
Returns the number of nonlinear solver iterations performed (so far).

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* nniters — number of nonlinear iterations performed.
Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NLS_OP_ERR if the SUNNONLINSOL object returned a failure flag

Notes: This is only accumulated for the ‘life’ of the nonlinear solver object; the counter is reset whenever a new
nonlinear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

int ARKStepGetNumNonlinSolvConvFails (void* arkode_mem, long int* nncfails)
Returns the number of nonlinear solver convergence failures that have occurred (so far).

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* nncfails — number of nonlinear convergence failures.

Return value:

4.5. User-callable functions 91

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL

Notes: This is only accumulated for the ‘life’ of the nonlinear solver object; the counter is reset whenever a new
nonlinear solver module is ‘attached” to ARKStep, or when ARKStep is resized.

int ARKStepGetNonlinSolvStats (void* arkode_mem, long int* nniters, long int* nncfails)
Returns all of the nonlinear solver statistics in a single call.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* nniters — number of nonlinear iterations performed.
* nncfails — number of nonlinear convergence failures.
Return value:
e ARK SUCCESS if successful
e ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NLS_OP_ERR if the SUNNONLINSOL object returned a failure flag

Notes: These are only accumulated for the ‘life’ of the nonlinear solver object; the counters are reset whenever
a new nonlinear solver module is ‘attached’” to ARKStep, or when ARKStep is resized.

Rootfinding optional output functions

Optional output Function name
Array showing roots found ARKStepGetRootInfo ()
No. of calls to user root function | ARKStepGet NumGEvals ()

int ARKStepGetRootInfo (void* arkode_mem, int* rootsfound)
Returns an array showing which functions were found to have a root.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* rootsfound — array of length nrifn with the indices of the user functions g; found to have a root
(the value of nrtfn was supplied in the call to ARKStepRootInit ()). Fori = 0... nrtfn-1,
rootsfound[1i] is nonzero if g; has a root, and O if not.

Return value:
e ARK _SUCCESS if successful
e ARK_MEM_NULL if the ARKStep memory was NULL
Notes: The user must allocate space for rootsfound prior to calling this function.

For the components of g; for which a root was found, the sign of root sfound[1i] indicates the direction of
zero-crossing. A value of +1 indicates that g; is increasing, while a value of -1 indicates a decreasing g;.

int ARKStepGetNumGEvals (void* arkode_mem, long int* ngevals)
Returns the cumulative number of calls made to the user’s root function g.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* ngevals — number of calls made to g so far.

92 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

Linear solver interface optional output functions

The following optional outputs are available from the ARKLS modules: workspace requirements, number of calls to
the Jacobian routine, number of calls to the mass matrix routine, number of calls to the implicit right-hand side routine
for finite-difference Jacobian approximation or Jacobian-vector product approximation, number of linear iterations,
number of linear convergence failures, number of calls to the preconditioner setup and solve routines, number of
calls to the Jacobian-vector setup and product routines, number of calls to the mass-matrix-vector setup and product
routines, and last return value from an ARKLS function. Note that, where the name of an output would otherwise
conflict with the name of an optional output from the main solver, a suffix LS (for Linear Solver) or MLS (for Mass

Linear Solver) has been added here (e.g. lenrwLS).

Optional output

Function name

Size of real and integer workspaces

ARKStepGetLinWorkSpace ()

No. of Jacobian evaluations

ARKStepGetNumJacEvals ()

No. of preconditioner evaluations

ARKStepGetNumPrecEvals ()

No. of preconditioner solves

ARKStepGetNumPrecSolves ()

No. of linear iterations

ARKStepGetNumLinIters ()

No. of linear convergence failures

ARKStepGetNumLinConvFails ()

No. of Jacobian-vector setup evaluations

ARKStepGetNumJTSetupEvals ()

No. of Jacobian-vector product evaluations

ARKStepGetNumJtimesEvals ()

No. of fi calls for finite diff. J or Jov evals.

ARKStepGetNumLinRhsEvals ()

Last return from a linear solver function

ARKStepGetLastLinFlag()

Name of constant associated with a return flag

ARKStepGetLinReturnFlagName ()

Size of real and integer mass matrix solver workspaces

ARKStepGetMassWorkSpace ()

No. of mass matrix solver setups (incl. M evals.)

ARKStepGetNumMassSetups ()

No. of mass matrix multiply setups

ARKStepGetNumMassMultSetups ()

No. of mass matrix multiplies

ARKStepGetNumMassMult ()

No. of mass matrix solves

ARKStepGetNumMassSolves ()

No. of mass matrix preconditioner evaluations

ARKStepGetNumMassPrecEvals ()

No. of mass matrix preconditioner solves

ARKStepGetNumMassPrecSolves ()

No. of mass matrix linear iterations

ARKStepGetNumMassIters ()

No. of mass matrix solver convergence failures

ARKStepGetNumMassConvFails ()

No. of mass-matrix-vector setup evaluations

ARKStepGetNumMTSetups ()

Last return from a mass matrix solver function

ARKStepGetLastMassFlag /()

int ARKStepGetLinWorkSpace (void* arkode_mem, long int* lenrwLS, long int* leniwLS)
Returns the real and integer workspace used by the ARKLS linear solver interface.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

e JenrwLS — the number of realtype values in the ARKLS workspace.

¢ leniwLS — the number of integer values in the ARKLS workspace.

Return value:

e ARKLS SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

4.5. User-callable functions

93

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: The workspace requirements reported by this routine correspond only to memory allocated within this
interface and to memory allocated by the SUNLinearSolver object attached to it. The template Jacobian
matrix allocated by the user outside of ARKLS is not included in this report.

In a parallel setting, the above values are global (i.e. summed over all processors).

int ARKStepGetNumJacEvals (void* arkode_mem, long int* njevals)
Returns the number of calls made to the Jacobian approximation routine.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* njevals — number of calls to the Jacobian function.
Return value:
e ARKLS SUCCESS if successful
* ARKLS_MEM_NULL if the ARKStep memory was NULL
* ARKLS_LMEM_NULL if the linear solver memory was NULL

int ARKStepGetNumPrecEvals (void* arkode_mem, long int* npevals)
Returns the total number of preconditioner evaluations, i.e. the number of calls made to psetup with jok =
SUNFALSE.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* npevals — the current number of calls to psetup.
Return value:
e ARKLS SUCCESS if successful
* ARKLS_MEM_NULL if the ARKStep memory was NULL
* ARKLS_LMEM_NULL if the linear solver memory was NULL

int ARKStepGetNumPrecSolves (void* arkode_mem, long int* npsolves)
Returns the number of calls made to the preconditioner solve function, psolve.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* npsolves — the number of calls to psolve.
Return value:
e ARKLS SUCCESS if successful
* ARKLS_MEM_NULL if the ARKStep memory was NULL
* ARKLS_LMEM_NULL if the linear solver memory was NULL

int ARKStepGetNumLinIters (void* arkode_mem, long int* nliters)
Returns the cumulative number of linear iterations.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

¢ nliters — the current number of linear iterations.

94 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Return value:
e ARKLS SUCCESS if successful
* ARKLS_MEM_NULL if the ARKStep memory was NULL
* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the ‘life’ of the linear solver object; the counter is reset whenever a new
linear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

int ARKStepGetNumLinConvFails (void* arkode_mem, long int* nicfails)
Returns the cumulative number of linear convergence failures.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nlcfails — the current number of linear convergence failures.
Return value:

e ARKLS SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

int ARKStepGetNumJTSetupEvals (void* arkode_mem, long int* njtsetup)
Returns the cumulative number of calls made to the user-supplied Jacobian-vector setup function, jtsetup.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* njtsetup — the current number of calls to jtsetup.
Return value:
* ARKLS_SUCCESS if successful
* ARKLS_MEM_NULL if the ARKStep memory was NULL
* ARKLS_LMEM_NULL if the linear solver memory was NULL

int ARKStepGetNumJtimesEvals (void* arkode_mem, long int* njvevals)
Returns the cumulative number of calls made to the Jacobian-vector product function, jtimes.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* njvevals — the current number of calls to jtimes.
Return value:
e ARKLS SUCCESS if successful
* ARKLS_MEM_NULL if the ARKStep memory was NULL
* ARKLS_LMEM_NULL if the linear solver memory was NULL

int ARKStepGetNumLinRhsEvals (void* arkode_mem, long int* nfevalsLS)
Returns the number of calls to the user-supplied implicit right-hand side function f! for finite difference Jaco-
bian or Jacobian-vector product approximation.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

4.5. User-callable functions 95

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

* nfevalsLS — the number of calls to the user implicit right-hand side function.
Return value:
* ARKLS_SUCCESS if successful
* ARKLS_MEM_NULL if the ARKStep memory was NULL
* ARKLS_LMEM_NULL if the linear solver memory was NULL
Notes: The value nfevalsLS is incremented only if the default internal difference quotient function is used.

int ARKStepGetLastLinFlag (void* arkode_mem, long int* Isflag)
Returns the last return value from an ARKLS routine.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* Isflag — the value of the last return flag from an ARKLS function.
Return value:

e ARKLS SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: If the ARKLSs setup function failed when using the SUNLINSOL_DENSE or SUNLINSOL_BAND mod-
ules, then the value of Isflag is equal to the column index (numbered from one) at which a zero diagonal element
was encountered during the LU factorization of the (dense or banded) Jacobian matrix. For all other failures,

Isflag is negative.

Otherwise, if the ARKLs setup function failed (ARKStepEvolve () returned ARK LSETUP_FAIL),

then Isflag will be SUNLS_PSET_FAIL_UNREC, SUNLS_ASET_FAIL_UNREC
SUNLS_PACKAGE_FAIL_UNREC.

If the ARKLS solve function failed (ARKStepEvolve () returned ARK_LSOLVE_FAIL), then Isflag contains
the error return flag from the SUNLinearSolver object, which will be one of: SUNLS_MEM_NULL, indi-
cating that the SUNLinearSolver memory is NULL; SUNLS_ATIMES_FAIL_UNREC, indicating an unre-
coverable failure in the Jv function; SUNLS_PSOLVE_FAIL_UNREC, indicating that the preconditioner solve
function failed unrecoverably; SUNLS_GS_FAIL, indicating a failure in the Gram-Schmidt procedure (SPGMR
and SPFGMR only); SUNLS_QRSOL_FAIL, indicating that the matrix R was found to be singular during the QR
solve phase (SPGMR and SPFGMR only); or SUNLS_PACKAGE_FAIL_UNREC, indicating an unrecoverable

failure in an external iterative linear solver package.

char *ARKStepGetLinReturnFlagName (long int Isflag)
Returns the name of the ARKLS constant corresponding to Isflag.

Arguments:

* Isflag — a return flag from an ARKLS function.

Return value: The return value is a string containing the name of the corresponding constant. If using the
SUNLINSOL_DENSE or SUNLINSOL_BAND modules, then if 1 < Isflag < n (LU factorization failed), this

routine returns “NONE”.

int ARKStepGetMassWorkSpace (void* arkode_mem, long int* lenrwMLS, long int* leniwMLS')
Returns the real and integer workspace used by the ARKLS mass matrix linear solver interface.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* lenrwMLS — the number of realtype values in the ARKLS mass solver workspace.

96 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

¢ leniwMLS — the number of integer values in the ARKLS mass solver workspace.
Return value:

* ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: The workspace requirements reported by this routine correspond only to memory allocated within this
interface and to memory allocated by the SUNLinearSolver object attached to it. The template mass matrix
allocated by the user outside of ARKLS is not included in this report.

In a parallel setting, the above values are global (i.e. summed over all processors).

int ARKStepGetNumMassSetups (void* arkode_mem, long int* nmsetups)
Returns the number of calls made to the ARKLS mass matrix solver ‘setup’ routine; these include all calls to
the user-supplied mass-matrix constructor function.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nmsetups — number of calls to the mass matrix solver setup routine.
Return value:

e ARKLS SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

int ARKStepGetNumMassMultSetups (void* arkode_mem, long int* nmvsetups)
Returns the number of calls made to the ARKLS mass matrix ‘matvec setup’ (matrix-based solvers) routine.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

e nmvsetups — number of calls to the mass matrix matrix-times-vector setup routine.
Return value:

* ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

int ARKStepGetNumMassMult (void* arkode_mem, long int* nmmults)
Returns the number of calls made to the ARKLS mass matrix ‘matvec’ routine (matrix-based solvers) or the
user-supplied mtimes routine (matris-free solvers).

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

» nmmults — number of calls to the mass matrix solver matrix-times-vector routine.
Return value:

* ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

4.5. User-callable functions 97

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

int ARKStepGetNumMassSolves (void* arkode_mem, long int* nmsolves)
Returns the number of calls made to the ARKLS mass matrix solver ‘solve’ routine.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nmsolves — number of calls to the mass matrix solver solve routine.
Return value:

* ARKLS_SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

int ARKStepGetNumMassPrecEvals (void* arkode_mem, long int* nmpevals)
Returns the total number of mass matrix preconditioner evaluations, i.e. the number of calls made to psetup.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* nmpevals — the current number of calls to psetup.
Return value:
e ARKLS SUCCESS if successful
* ARKLS_MEM_NULL if the ARKStep memory was NULL
* ARKLS_LMEM_NULL if the linear solver memory was NULL

int ARKStepGetNumMassPrecSolves (void* arkode_mem, long int* nmpsolves)
Returns the number of calls made to the mass matrix preconditioner solve function, psolve.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
e nmpsolves — the number of calls to psolve.
Return value:
e ARKLS SUCCESS if successful
* ARKLS_MEM_NULL if the ARKStep memory was NULL
* ARKLS_LMEM_NULL if the linear solver memory was NULL

int ARKStepGetNumMassIters (void* arkode_mem, long int* nmiters)
Returns the cumulative number of mass matrix solver iterations.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nmiters — the current number of mass matrix solver linear iterations.
Return value:

e ARKLS SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

int ARKStepGetNumMassConvFails (void* arkode_mem, long int* nmcfails)
Returns the cumulative number of mass matrix solver convergence failures.

98 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* nmcfails — the current number of mass matrix solver convergence failures.
Return value:

e ARKLS SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

int ARKStepGetNumMTSetups (void* arkode_mem, long int* nmtsetup)
Returns the cumulative number of calls made to the user-supplied mass-matrix-vector product setup function,
mtsetup.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* nmtsetup — the current number of calls to mtsetup.
Return value:
e ARKLS SUCCESS if successful
* ARKLS_MEM_NULL if the ARKStep memory was NULL
* ARKLS_LMEM_NULL if the linear solver memory was NULL

int ARKStepGetLastMassF1lag (void* arkode_mem, long int* misflag)
Returns the last return value from an ARKLS mass matrix interface routine.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

 mlisflag — the value of the last return flag from an ARKLS mass matrix solver interface function.
Return value:

e ARKLS SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL

* ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: The values of msflag for each of the various solvers will match those described above for the function
ARKStepGetLastLSFlag ().

General usability functions

The following optional routines may be called by a user to inquire about existing solver parameters, to retrieve stored
Butcher tables, write the current Butcher table(s), or even to test a provided Butcher table to determine its analytical
order of accuracy. While none of these would typically be called during the course of solving an initial value problem,
these may be useful for users wishing to better understand ARKStep and/or specific Runge-Kutta methods.

Optional routine Function name
Output all ARKStep solver parameters | ARKStepWriteParameters ()
Output the current Butcher table(s) ARKStepWriteButcher ()

int ARKStepWriteParameters (void* arkode_mem, FILE *fp)
Outputs all ARKStep solver parameters to the provided file pointer.

4.5. User-callable functions 99

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* fp — pointer to use for printing the solver parameters.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
Notes: The fp argument can be st dout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since parameters for all
processes would be identical.

int ARKStepWriteButcher (void* arkode_mem, FILE *fp)
Outputs the current Butcher table(s) to the provided file pointer.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* fp — pointer to use for printing the Butcher table(s).
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
Notes: The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

If ARKStep is currently configured to run in purely explicit or purely implicit mode, this will output a single
Butcher table; if configured to run an ImEx method then both tables will be output.

When run in parallel, only one process should set a non-NULL value for this pointer, since tables for all pro-
cesses would be identical.

4.5.11 ARKStep re-initialization functions

To reinitialize the ARKStep module for the solution of a new problem, where a prior call to ARKStepCreate ()
has been made, the user must call the function ARKStepReInit (). The new problem must have the same size
as the previous one. This routine retains the current settings for all ARKstep module options and performs the same
input checking and initializations that are done in ARKStepCreate (), but it performs no memory allocation as it
assumes that the existing internal memory is sufficient for the new problem. A call to this re-initialization routine
deletes the solution history that was stored internally during the previous integration. Following a successful call to
ARKStepReInit (),call ARKStepEvolve () again for the solution of the new problem.

The use of ARKStepReInit () requires that the number of Runge Kutta stages, denoted by s, be no larger for the
new problem than for the previous problem. This condition is automatically fulfilled if the method order g and the
problem type (explicit, implicit, ImEx) are left unchanged.

When using the ARKStep time-stepping module, if there are changes to the linear solver specifications, the user
should make the appropriate calls to either the linear solver objects themselves, or to the ARKLS interface routines, as
described in the section Linear solver interface functions. Otherwise, all solver inputs set previously remain in effect.

One important use of the ARKStepReInit () function is in the treating of jump discontinuities in the RHS functions.
Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and restart the
integrator with a readjusted ODE model, using a call to ARKStepReInit (). To stop when the location of the
discontinuity is known, simply make that location a value of tout. To stop when the location of the discontinuity
is determined by the solution, use the rootfinding feature. In either case, it is critical that the RHS functions not

100 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

incorporate the discontinuity, but rather have a smooth extension over the discontinuity, so that the step across it (and
subsequent rootfinding, if used) can be done efficiently. Then use a switch within the RHS functions (communicated
through user_data) that can be flipped between the stopping of the integration and the restart, so that the restarted
problem uses the new values (which have jumped). Similar comments apply if there is to be a jump in the dependent
variable vector.

int ARKStepRelInit (void* arkode_mem, ARKRhsFn fe, ARKRhsFn fi, realtype t0, N_Vector y0)
Provides required problem specifications and re-initializes the ARKStep time-stepper module.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

¢ fe — the name of the C function (of type ARKRhsFn ()) defining the explicit portion of the right-hand
side function in M ¢ = fE(t,y) + f1(t,y).

* fi—the name of the C function (of type ARKRhsFn ()) defining the implicit portion of the right-hand
side functionin M g = fE(t,y) + fL(t,y).

* 10 — the initial value of ¢.
* y0 - the initial condition vector y(¢).
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_MEM_FAIL if a memory allocation failed
* ARK_ILL _INPUT if an argument has an illegal value.
Notes: All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, ARKStepReInit () also sends an error message to the error handler function.

4.5.12 ARKStep system resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatially-adaptive PDE simulations under a method-of-lines approach), the ARKStep integrator may be “resized”
between integration steps, through calls to the ARKStepResize () function. This function modifies ARKStep’s
internal memory structures to use the new problem size, without destruction of the temporal adaptivity heuristics.
It is assumed that the dynamical time scales before and after the vector resize will be comparable, so that all time-
stepping heuristics prior to calling ARKStepResize () remain valid after the call. If instead the dynamics should
be recomputed from scratch, the ARKStep memory structure should be deleted with a call to ARKStepFree (), and
recreated with a calls to ARKStepCreate ().

To aid in the vector resize operation, the user can supply a vector resize function that will take as input a vector with
the previous size, and transform it in-place to return a corresponding vector of the new size. If this function (of type
ARKVecResizeFn ()) is not supplied (i.e. is set to NULL), then all existing vectors internal to ARKStep will be
destroyed and re-cloned from the new input vector.

In the case that the dynamical time scale should be modified slightly from the previous time scale, an input Ascale is
allowed, that will rescale the upcoming time step by the specified factor. If a value hscale < 0 is specified, the default
of 1.0 will be used.

int ARKStepResize (void* arkode_mem, N_Vector ynew, realtype hscale, realtype 10, ARKVecResizeFn re-

size, void* resize_data)
Re-initializes ARKStep with a different state vector but with comparable dynamical time scale.

Arguments:

4.5. User-callable functions 101

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

* arkode_mem — pointer to the ARKStep memory block.
* ynew — the newly-sized solution vector, holding the current dependent variable values (o).

* hscale — the desired scaling factor for the dynamical time scale (i.e. the next step will be of size
h*hscale).

* 10 — the current value of the independent variable ¢; (this must be consistent with ynew).
* resize — the user-supplied vector resize function (of type ARKVecResizeFn ().

* resize_data — the user-supplied data structure to be passed to resize when modifying internal ARKStep
vectors.

Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
e ARK_ NO_MALLOC if arkode_mem was not allocated.
* ARK_ILL_INPUT if an argument has an illegal value.

Notes: If an error occurred, ARKStepResize () also sends an error message to the error handler function.

Resizing the linear solver

When using any of the SUNDIALS-provided linear solver modules, the linear solver memory structures must also
be resized. At present, none of these include a solver-specific ‘resize’ function, so the linear solver memory must
be destroyed and re-allocated following each call to ARKStepResize (). Moreover, the existing ARKLS interface
should then be deleted and recreated by attaching the updated SUNLinearSolver (and possibly SUNMatrix)
object(s) through calls to ARKStepSetLinearSolver (),and ARKStepSetMassLinearSolver ().

If any user-supplied routines are provided to aid the linear solver (e.g. Jacobian construction, Jacobian-vector product,
mass-matrix-vector product, preconditioning), then the corresponding “set” routines must be called again following
the solver re-specification.

Resizing the absolute tolerance array

If using array-valued absolute tolerances, the absolute tolerance vector will be invalid after the
call to ARKStepResize (), so the new absolute tolerance vector should be re-set following each
call to ARKStepResize () through a new call to ARKStepSVtolerances () (and similarly to
ARKStepResVtolerance () if that was used for the original problem).

If scalar-valued tolerances or a tolerance function was specified through either ARKStepSStolerances () or
ARKStepWFtolerances (), then these will remain valid and no further action is necessary.

Note: For an example of ARKStepResize () usage, see the supplied serial C example problem,
ark_heatlD_adapt.c.

4.6 User-supplied functions

The user-supplied functions for ARKStep consist of:
* at least one function defining the ODE (required),

* afunction that handles error and warning messages (optional),

102 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

* a function that provides the error weight vector (optional),

* afunction that provides the residual weight vector (optional),

* a function that handles adaptive time step error control (optional),

* a function that handles explicit time step stability (optional),

* a function that updates the implicit stage prediction (optional),

* a function that defines the root-finding problem(s) to solve (optional),

* one or two functions that provide Jacobian-related information for the linear solver, if a Newton-based nonlinear
iteration is chosen (optional),

* one or two functions that define the preconditioner for use in any of the Krylov iterative algorithms, if a Newton-
based nonlinear iteration and iterative linear solver are chosen (optional), and

« if the problem involves a non-identity mass matrix M # I:

— one or two functions that provide mass-matrix-related information for the linear and mass matrix solvers
(required),

— one or two functions that define the mass matrix preconditioner for use in an iterative mass matrix solver
is chosen (optional), and

* afunction that handles vector resizing operations, if the underlying vector structure supports resizing (as opposed
to deletion/recreation), and if the user plans to call ARKStepResize () (optional).

4.6.1 ODE right-hand side

The user must supply at least one function of type ARKRhsFn to specify the explicit and/or implicit portions of the
ODE system:

typedef int (*ARKRhsFn) (realtype ¢, N_Vector y, N_Vector ydot, void* user_data)
These functions compute the ODE right-hand side for a given value of the independent variable ¢ and state
vector y.

Arguments:
* ¢ —the current value of the independent variable.
* y — the current value of the dependent variable vector.
* ydot — the output vector that forms a portion of the ODE RHS f#(t,y) + f1(t,y).
* user_data — the user_data pointer that was passed to ARKStepSetUserData ().

Return value: An ARKRhsFn should return 0 if successful, a positive value if a recoverable error occurred (in
which case ARKStep will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and ARK_RHSFUNC_FAIL is returned).

Notes: Allocation of memory for ydot is handled within the ARKStep module. A recoverable failure error
return from the ARKRhsFn is typically used to flag a value of the dependent variable y that is “illegal” in
some way (e.g., negative where only a non-negative value is physically meaningful). If such a return is made,
ARKStep will attempt to recover (possibly repeating the nonlinear iteration, or reducing the step size) in order
to avoid this recoverable error return. There are some situations in which recovery is not possible even if the
right-hand side function returns a recoverable error flag. One is when this occurs at the very first call to the
ARKRhsFn (in which case ARKStep returns ARK_FIRST_RHSFUNC_ERR). Another is when a recoverable
error is reported by ARKRhsFn after the integrator completes a successful stage, in which case ARKStep returns
ARK_UNREC_RHSFUNC_ERR).

4.6. User-supplied functions 103

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

4.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed to by errfp (see
ARKStepSetErrFile ()), the user may provide a function of type ARKErrHandlerFn to process any such
messages.

typedef void (*ARKErrHandlerFn) (int error_code, const char* module, const char* function, char* msg,

void* user_data)
This function processes error and warning messages from ARKStep and its sub-modules.

Arguments:
e error_code — the error code.
* module — the name of the ARKStep module reporting the error.
* function — the name of the function in which the error occurred.
* msg — the error message.

* user_data — a pointer to user data, the same as the eh_data parameter that was passed to
ARKStepSetErrHandlerFn ().

Return value: An ARKErrHandlerFn function has no return value.

Notes: error_code is negative for errors and positive (ARK_WARNING) for warnings. If a function that returns
a pointer to memory encounters an errot, it sets error_code to 0.

4.6.3 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function of type ARKEwt F'n

1/2
to compute a vector ewt containing the weights in the WRMS norm ||v||wras = (% Yo (ewt; vi)2) . These
weights will be used in place of those defined in the section Error norms.

typedef int (*ARKEwtFn) (N_Vector y, N_Vector ewt, void* user_data)
This function computes the WRMS error weights for the vector y.

Arguments:
* y — the dependent variable vector at which the weight vector is to be computed.
* ewt — the output vector containing the error weights.

* user_data — a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData ().

Return value: An ARKEwtFn function must return 0 if it successfully set the error weights, and -1 otherwise.
Notes: Allocation of memory for ewt is handled within ARKStep.

The error weight vector must have all components positive. It is the user’s responsibility to perform this test and
return -1 if it is not satisfied.

4.6.4 Residual weight function

As an alternative to providing the scalar or vector absolute residual tolerances (when the IVP units differ from the
solution units), the user may provide a function of type ARKRwt F'n to compute a vector 7wt containing the weights in

1/2
the WRMS norm ||v||w ryms = (% Sy (rwt; vl-)z) . These weights will be used in place of those defined in the

section Error norms.

104 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

typedef int (*ARKRwtFn) (N_Vector y, N_Vector rwt, void* user_data)
This function computes the WRMS residual weights for the vector y.

Arguments:

y — the dependent variable vector at which the weight vector is to be computed.
rwt — the output vector containing the residual weights.

user_data — a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData ().

Return value: An ARKRwtFn function must return 0 if it successfully set the residual weights, and -1 otherwise.

Notes: Allocation of memory for rwt is handled within ARKStep.

The residual weight vector must have all components positive. It is the user’s responsibility to perform this test
and return -1 if it is not satisfied.

4.6.5 Time step adaptivity function

As an alternative to using one of the built-in time step adaptivity methods for controlling solution error, the user may
provide a function of type ARKAdaptFn to compute a target step size h for the next integration step. These steps
should be chosen as the maximum value such that the error estimates remain below 1.

typedef int (*ARKAdaptFn) (N_Vector y, realtype ¢, realtype hl, realtype h2, realtype h3, realtype el, real-

type e2, realtype e3, int g, int p, realtype* hnew, void* user_data)

This function implements a time step adaptivity algorithm that chooses h satisfying the error tolerances.

Arguments:

y — the current value of the dependent variable vector.
t — the current value of the independent variable.

hl — the current step size, t,, — ty—1.

h2 — the previous step size, t,,—1 — t—2.

h3 — the step size t,—o — t_3.

el — the error estimate from the current step, 7.

e2 — the error estimate from the previous step, n — 1.
e3 — the error estimate from the step n — 2.

q — the global order of accuracy for the method.

p — the global order of accuracy for the embedded method.
hnew — the output value of the next step size.

user_data — a pointer to user data, the same as the h_data parameter that was passed to
ARKStepSetAdaptivityFn ().

Return value: An ARKAdaptFn function should return 0 if it successfully set the next step size, and a non-zero
value otherwise.

4.6.6 Explicit stability function

A user may supply a function to predict the maximum stable step size for the explicit portion of the ImEx system,
fE(t,y). While the accuracy-based time step adaptivity algorithms may be sufficient for retaining a stable solution

4.6. User-supplied functions 105

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

to the ODE system, these may be inefficient if f¥(¢,y) contains moderately stiff terms. In this scenario, a user may
provide a function of type ARKExpStabFn to provide this stability information to ARKStep. This function must
set the scalar step size satisfying the stability restriction for the upcoming time step. This value will subsequently be
bounded by the user-supplied values for the minimum and maximum allowed time step, and the accuracy-based time
step.

typedef int (*ARKExpStabFn) (N_Vector y, realtype , realtype* hstab, void* user_data)
This function predicts the maximum stable step size for the explicit portions of the ImEx ODE system.

Arguments:
 y —the current value of the dependent variable vector.
* t—the current value of the independent variable.
* hstab — the output value with the absolute value of the maximum stable step size.

* user_data — a pointer to user data, the same as the estab_data parameter that was passed to
ARKStepSetStabilityFn ().

Return value: An ARKExpStabFn function should return O if it successfully set the upcoming stable step size,
and a non-zero value otherwise.

Notes: If this function is not supplied, or if it returns Astab < 0.0, then ARKStep will assume that there is no
explicit stability restriction on the time step size.

4.6.7 Implicit stage prediction function

A user may supply a function to update the prediction for each implicit stage solution. If supplied, this routine will be
called after any existing ARKStep predictor algorithm completes, so that the predictor may be modified by the user as
desired. In this scenario, a user may provide a function of type ARKStepStagePredictFn to provide this implicit
predictor to ARKStep. This function takes as input the already-predicted implicit stage solution and the corresponding
‘time’ for that prediction; it then updates the prediction vector as desired.

typedef int (*xARKStepStagePredictFn) (realtype 7, N_Vector zpred, void* user_data)
This function updates the prediction for the implicit stage solution.

Arguments:
¢ t—the current value of the independent variable.

* zpred —the ARKStep-predicted stage solution on input, and the user-modified predicted stage solution
on output.

* user_data — a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData ().

Return value: An ARKStepStagePredictFn function should return O if it successfully set the upcoming stable
step size, and a non-zero value otherwise.

Notes: This may be useful if there are bound constraints on the solution, and these should be enforced prior to
beginning the nonlinear or linear implicit solver algorithm.

This routine is incompatible with the “minimum correction predictor” — option 5 to the routine
ARKStepSetPredictorMethod (). If both are selected, then ARKStep will override its built-in implicit
predictor routine to instead use option O (trivial predictor).

106 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

4.6.8 Rootfinding function
If a rootfinding problem is to be solved during the integration of the ODE system, the user must supply a function of
type ARKRootFn.

typedef int (*ARKRootFn) (realtype t, N_Vector y, realtype* gout, void* user_data)
This function implements a vector-valued function g(¢, y) such that the roots of the nrifn components g;(t,y)
are sought.

Arguments:
* t—the current value of the independent variable.
* y — the current value of the dependent variable vector.
* gout — the output array, of length nrifn, with components g, (¢, y).

* user_data — a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData ().

Return value: An ARKRootFn function should return O if successful or a non-zero value if an error occurred
(in which case the integration is halted and ARKStep returns ARK_RTFUNC_FAIL).

Notes: Allocation of memory for gout is handled within ARKStep.

4.6.9 Jacobian construction (matrix-based linear solvers)

If a matrix-based linear solver module is used (i.e., a non-NULL SUNMatrix object was supplied to
ARKStepSetLinearSolver () insection A skeleton of the user’s main program), the user may provide a function
of type ARKLsJacFn to provide the Jacobian approximation or ARKLsLinSysFn to provide an approximation of
the linear system A =1 —~vJor A =M —~J.

typedef int (*ARKLsJacFn) (realtype f, N_Vector y, N_Vector fy, SUNMatrix Jac, void* user_data,
N_Vector tmpl, N_Vector tmp2, N_Vector tmp3)

This function computes the Jacobian matrix J = %—J;I (or an approximation to it).
Arguments:
* ¢ —the current value of the independent variable.
* y — the current value of the dependent variable vector, namely the predicted value of y(t).
* fy — the current value of the vector f(t,y).
* Jac — the output Jacobian matrix.

* user_data — a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData ().

e tmpl, tmp2, tmp3 — pointers to memory allocated to variables of type N_Vector which can be used
by an ARKLsJacFn as temporary storage or work space.

Return value: An ARKLsJacFn function should return O if successful, a positive value if a recov-
erable error occurred (in which case ARKStep will attempt to correct, while ARKLS sets last_flag
to ARKLS JACFUNC_RECVR), or a negative value if it failed unrecoverably (in which case the in-
tegration is halted, ARKStepEvolve () returns ARK_LSETUP_FAIL and ARKLS sets last_flag to
ARKLS JACFUNC_UNRECVR).

Notes: Information regarding the structure of the specific SUNMatrix structure (e.g.~number of rows, up-
per/lower bandwidth, sparsity type) may be obtained through using the implementation-specific SUNMat rix
interface functions (see the section Matrix Data Structures for details).

4.6. User-supplied functions 107

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Prior to calling the user-supplied Jacobian function, the Jacobian matrix J(t,y) is zeroed out, so only nonzero
elements need to be loaded into Jac.

With direct linear solvers (i.e., linear solvers with type SUNLINEARSOLVER_DIRECT), the Jacobian matrix
J(t,y) is zeroed out prior to calling the user-supplied Jacobian function so only nonzero elements need to be
loaded into Jac.

If the user’s ARKLsJacFn function uses difference quotient approximations, then it may need to access quan-
tities not in the argument list. These include the current step size, the error weights, etc. To obtain these, the
user will need to add a pointer to the ark_mem structure to their user_data, and then use the ARKStepGet*
functions listed in Optional output functions. The unit roundoff can be accessed as UNIT_ROUNDOFF, which
is defined in the header file sundials_types.h.

dense:

A user-supplied dense Jacobian function must load the N by N dense matrix Jac with an approximation to the
Jacobian matrix J(¢,y) at the point (¢, y). The accessor macros SM_ELEMENT_D and SM_COLUMN_D allow
the user to read and write dense matrix elements without making explicit references to the underlying repre-
sentation of the SUNMATRIX_DENSE type. SM_ELEMENT_D (J, i, J) referencesthe (i, j)-th element
of the dense matrix J (for i, j between 0 and N-1). This macro is meant for small problems for which ef-
ficiency of access is not a major concern. Thus, in terms of the indices m and n ranging from 1 to N, the
Jacobian element J,, ,, can be set using the statement SM_ELEMENT_D (J, m-1, n-1) =J,,,. Alterna-
tively, SM_COLUMN_D (J, j) returns a pointer to the first element of the j-th column of J (for j ranging
from 0 to N-1), and the elements of the j-th column can then be accessed using ordinary array indexing. Con-
sequently, J,, », can be loaded using the statements col_n = SM_COLUMN_D (J, n-1); col_n[m-1]
= Jym,n. For large problems, it is more efficient to use SM_COLUMN_D than to use SM_ELEMENT_D. Note that
both of these macros number rows and columns starting from 0. The SUNMATRIX_DENSE type and accessor
macros are documented in section 7he SUNMATRIX_DENSE Module.

band:

A user-supplied banded Jacobian function must load the band matrix Jac with the elements of the
Jacobian J(t,y) at the point (¢,y). The accessor macros SM_ELEMENT_B, SM_COLUMN_B, and
SM_COLUMN_ELEMENT_B allow the user to read and write band matrix elements without making specific
references to the underlying representation of the SUNMATRIX_BAND type. SM_ELEMENT_B (J, 1, 3Jj)
references the (i, j)-th element of the band matrix J, counting from 0. This macro is meant for use in small
problems for which efficiency of access is not a major concern. Thus, in terms of the indices m and n rang-
ing from 1 to N with (m,n) within the band defined by mupper and mlower, the Jacobian element .J,,, ,, can
be loaded using the statement SM_ELEMENT_B (J, m-1, n-1) = J,,. The elements within the band
are those with -mupper < m — n < mlower. Alternatively, SM_COLUMN_B (J, J) returns a pointer to the
diagonal element of the j-th column of J, and if we assign this address to realtype =*col_7j, then the
i-th element of the j-th column is given by SM_COLUMN_ELEMENT_B (col_3j, i, 3J), counting from
0. Thus, for (m, n) within the band, Jm,n can be loaded by setting col_n = SM_COLUMN_B (J, n-1);
SM_COLUMN_ELEMENT_B (col_n, m-1, n-1) = J, , . The elements of the j-th column can also be
accessed via ordinary array indexing, but this approach requires knowledge of the underlying storage for a
band matrix of type SUNMATRIX_BAND. The array col_n can be indexed from -mupper to mlower. For
large problems, it is more efficient to use SM_COLUMN_B and SM_COLUMN_ELEMENT_B than to use the
SM_ELEMENT_B macro. As in the dense case, these macros all number rows and columns starting from 0. The
SUNMATRIX_BAND type and accessor macros are documented in section 7he SUNMATRIX_BAND Module.

sparse:

A user-supplied sparse Jacobian function must load the compressed-sparse-column (CSC) or compressed-
sparse-row (CSR) matrix Jac with an approximation to the Jacobian matrix J(¢,y) at the point (¢,y). Storage
for Jac already exists on entry to this function, although the user should ensure that sufficient space is allocated
in Jac to hold the nonzero values to be set; if the existing space is insufficient the user may reallocate the data
and index arrays as needed. The amount of allocated space in a SUNMATRIX_SPARSE object may be accessed

108

Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

using the macro SM_NNZ_S or the routine SUNSparseMatrix_NNZ (). The SUNMATRIX_SPARSE type
is further documented in the section 7he SUNMATRIX _SPARSE Module.

typedef int (*ARKLsLinSysFn) (realtype t, N_Vector y, N_Vector fy, SUNMatrix A, SUNMatrix M,
booleantype jok, booleantype *jcur, realtype gamma, void *user_data,

N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)
This function computes the linear system matrix A = M — ~J (or an approximation to it).

Arguments:
* ¢t —the current value of the independent variable.
* y — the current value of the dependent variable vector, namely the predicted value of y(t).
* fy —the current value of the vector f(t,y).
* A —the output linear system matrix.
* M — the current mass matrix (this input is NULL if M = I).

 jok — is an input flag indicating whether the Jacobian-related data needs to be updated. The jok
argument provides for the reuse of Jacobian data in the preconditioner solve function. When jok =
SUNFALSE, the Jacobian-related data should be recomputed from scratch. When jok = SUNTRUE the
Jacobian data, if saved from the previous call to this function, can be reused (with the current value of
gamma). A call with jok = SUNTRUE can only occur after a call with jok = SUNFALSE.

e jcur —1is a pointer to a flag which should be set to SUNTRUE if Jacobian data was recomputed, or set
to SUNFALSE if Jacobian data was not recomputed, but saved data was still reused.

* gamma — the scalar « appearing in the Newton matrix givenby A =1 —~vJor A =M —~J.

* user_data — a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData ().

e tmpl, tmp2, tmp3 — pointers to memory allocated to variables of type N_Vector which can be used
by an ARKLsLinSysFn as temporary storage or work space.

Return value: An ARKLsLinSysFn function should return O if successful, a positive value if a re-
coverable error occurred (in which case ARKStep will attempt to correct, while ARKLS sets last_flag
to ARKLS JACFUNC_RECVR), or a negative value if it failed unrecoverably (in which case the in-
tegration is halted, ARKStepEvolve () returns ARK_LSETUP_FAIL and ARKLS sets last_flag to
ARKLS_JACFUNC_UNRECVR).

4.6.10 Jacobian-vector product (matrix-free linear solvers)

When using a matrix-free linear solver modules for the implicit stage solves (i.e., a NULL-valued SUNMATRIX
argument was supplied to ARKStepSetLinearSolver () in the section A skeleton of the user’s main program),
the user may provide a function of type ARKLsJacTimesVecFn in the following form, to compute matrix-vector
products Jv. If such a function is not supplied, the default is a difference quotient approximation to these products.

typedef int (*ARKLsJacTimesVecFn) (N_Vector v, N_Vector Jv, realtype ¢, N_Vector y, N_Vector fy,
void* user_data, N_Vector tmp)

I
This function computes the product Jv = (%) v (or an approximation to it).

Arguments:
* v — the vector to multiply.
* Jv — the output vector computed.

* ¢t —the current value of the independent variable.

4.6. User-supplied functions 109

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

 y — the current value of the dependent variable vector.
* fy — the current value of the vector f(t,y).

* user_data — a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData ().

* tmp — pointer to memory allocated to a variable of type N_Vector which can be used as temporary
storage or work space.

Return value: The value to be returned by the Jacobian-vector product function should be 0 if successful. Any
other return value will result in an unrecoverable error of the generic Krylov solver, in which case the integration
is halted.

Notes: If the user’s ARKLsJacTimesVecFn function uses difference quotient approximations, it may need
to access quantities not in the argument list. These include the current step size, the error weights, etc. To
obtain these, the user will need to add a pointer to the ark_mem structure to their user_data, and then
use the ARKStepGet* functions listed in Optional output functions. The unit roundoff can be accessed as
UNIT_ROUNDOFF, which is defined in the header file sundials_types.h.

4.6.11 Jacobian-vector product setup (matrix-free linear solvers)

If the user’s Jacobian-times-vector routine requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied function of type ARKLsJacTimesSetupFn, defined as follows:

typedef int (*ARKLsJacTimesSetupFn) (realtype ¢, N_Vector y, N_Vector fy, void* user_data)
This function preprocesses and/or evaluates any Jacobian-related data needed by the Jacobian-times-vector rou-
tine.

Arguments:
* ¢ —the current value of the independent variable.
 y — the current value of the dependent variable vector.
* fy — the current value of the vector f(t,y).

* user_data — a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData ().

Return value: The value to be returned by the Jacobian-vector setup function should be 0 if successful, positive
for a recoverable error (in which case the step will be retried), or negative for an unrecoverable error (in which
case the integration is halted).

Notes: Each call to the Jacobian-vector setup function is preceded by a call to the implicit ARKRhsFn user
function with the same (¢, y) arguments. Thus, the setup function can use any auxiliary data that is computed
and saved during the evaluation of the implicit ODE right-hand side.

If the user’s ARKLsJacTimesSetupFn function uses difference quotient approximations, it may need to
access quantities not in the argument list. These include the current step size, the error weights, etc. To
obtain these, the user will need to add a pointer to the ark_mem structure to their user_data, and then
use the ARKStepGet* functions listed in Optional output functions. The unit roundoff can be accessed as
UNIT_ROUNDOFF, which is defined in the header file sundials_types.h.

4.6.12 Preconditioner solve (iterative linear solvers)

If a user-supplied preconditioner is to be used with a SUNLinSol solver module, then the user must provide a function
of type ARKLsPrecSolveFn to solve the linear system Pz = r, where P corresponds to either a left or right
preconditioning matrix. Here P should approximate (at least crudely) the Newton matrix A = M — ~.J, where M is

110 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

the mass matrix (typically M = I unless working in a finite-element setting) and J = aa—’: If preconditioning is done
on both sides, the product of the two preconditioner matrices should approximate A.

typedef int (*ARKLsPrecSolveFn) (realtype #, N_Vector y, N_Vector fy, N_Vector r, N_Vector z, real-

type gamma, realtype delta, int Ir, void* user_data)
This function solves the preconditioner system Pz = r.

Arguments:
* t—the current value of the independent variable.
 y — the current value of the dependent variable vector.
s fy —the current value of the vector f7(t,y).
 r — the right-hand side vector of the linear system.
» z—the computed output solution vector.
¢ gamma — the scalar ~y appearing in the Newton matrix given by A = M — ~J.

* delta — an input tolerance to be used if an iterative method is employed in the solution. In that case,
the residual vector Res = r — Pz of the system should be made to be less than delta in the weighted

1/2
l> norm, i.e. (Z?zl (Res; * ewti)g) < 6, where § = delta. To obtain the N_Vector ewt, call
ARKStepGetErrWeights ().

 [r — an input flag indicating whether the preconditioner solve is to use the left preconditioner (Ir = 1)
or the right preconditioner (Ir = 2).

* user_data — a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData ().

Return value: The value to be returned by the preconditioner solve function is a flag indicating whether it was
successful. This value should be 0 if successful, positive for a recoverable error (in which case the step will be
retried), or negative for an unrecoverable error (in which case the integration is halted).

4.6.13 Preconditioner setup (iterative linear solvers)
If the user’s preconditioner routine requires that any data be preprocessed or evaluated, then these actions need to
occur within a user-supplied function of type ARKLsPrecSetupFn.

typedef int (*ARKLsPrecSetupFn) (realtype f, N_Vector y, N_Vector fy, booleantype jok, boolean-

type* jcurPtr, realtype gamma, void* user_data)
This function preprocesses and/or evaluates Jacobian-related data needed by the preconditioner.

Arguments:
* ¢ —the current value of the independent variable.
 y — the current value of the dependent variable vector.
* fy — the current value of the vector f(t,y).

* jok — is an input flag indicating whether the Jacobian-related data needs to be updated. The jok
argument provides for the reuse of Jacobian data in the preconditioner solve function. When jok =
SUNFALSE, the Jacobian-related data should be recomputed from scratch. When jok = SUNTRUE the
Jacobian data, if saved from the previous call to this function, can be reused (with the current value of
gamma). A call with jok = SUNTRUE can only occur after a call with jok = SUNFALSE.

e jcurPtr — is a pointer to a flag which should be set to SUNTRUE if Jacobian data was recomputed, or
set to SUNFALSE if Jacobian data was not recomputed, but saved data was still reused.

* gamma — the scalar « appearing in the Newton matrix given by A = M — ~.J.

4.6. User-supplied functions 111

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

* user_data — a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData ().

Return value: The value to be returned by the preconditioner setup function is a flag indicating whether it was
successful. This value should be 0 if successful, positive for a recoverable error (in which case the step will be
retried), or negative for an unrecoverable error (in which case the integration is halted).

Notes: The operations performed by this function might include forming a crude approximate Jacobian, and
performing an LU factorization of the resulting approximation to A = M — ~J.

Each call to the preconditioner setup function is preceded by a call to the implicit ARKRh sF'n user function with
the same (¢, y) arguments. Thus, the preconditioner setup function can use any auxiliary data that is computed
and saved during the evaluation of the ODE right-hand side.

This function is not called in advance of every call to the preconditioner solve function, but rather is called only
as often as needed to achieve convergence in the Newton iteration.

If the user’s ARKLsPrecSetupFn function uses difference quotient approximations, it may need to access
quantities not in the call list. These include the current step size, the error weights, etc. To obtain these, the
user will need to add a pointer to the ark_mem structure to their user_data, and then use the ARKStepGet*
functions listed in Optional output functions. The unit roundoff can be accessed as UNIT_ROUNDOFF, which
is defined in the header file sundials_types.h.

4.6.14 Mass matrix construction (matrix-based linear solvers)

If a matrix-based mass-matrix linear solver is used (i.e., a non-NULL SUNMATRIX was supplied to
ARKStepSetMassLinearSolver () inthe section A skeleton of the user’s main program), the user must provide
a function of type ARKL sMassFn to provide the mass matrix approximation.

typedef int (*ARKLsMassFn) (realtype t, SUNMatrix M, void* user_data, N_Vector tmpl, N_Vector tmp2,

N_Vector tmp3)
This function computes the mass matrix M (or an approximation to it).

Arguments:
* t—the current value of the independent variable.
* M — the output mass matrix.

* user_data — a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData ().

e tmpl, tmp2, tmp3 — pointers to memory allocated to variables of type N_Vector which can be used
by an ARKLsMassFn as temporary storage or work space.

Return value: An ARKLsMassFn function should return O if successful, or a negative value if it failed unre-
coverably (in which case the integration is halted, ARKStepEvolve () returns ARK_MASSSETUP_FAIL and
ARKLS sets last_flag to ARKLS_MASSFUNC_UNRECVR).

Notes: Information regarding the structure of the specific SUNMatrix structure (e.g.~number of rows, up-
per/lower bandwidth, sparsity type) may be obtained through using the implementation-specific SUNMat rix
interface functions (see the section Matrix Data Structures for details).

Prior to calling the user-supplied mass matrix function, the mass matrix M is zeroed out, so only nonzero
elements need to be loaded into M.

dense:

A user-supplied dense mass matrix function must load the N by N dense matrix M with an approximation to the
mass matrix M. As discussed above in section Jacobian construction (matrix-based linear solvers), the accessor
macros SM_ELEMENT_D and SM_COLUMN_D allow the user to read and write dense matrix elements without

112 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

making explicit references to the underlying representation of the SUNMATRIX_DENSE type. Similarly, the
SUNMATRIX_DENSE type and accessor macros SM_ELEMENT_D and SM_COLUMN_D are documented in
the section The SUNMATRIX_DENSE Module.

band:

A user-supplied banded mass matrix function must load the band matrix M with the elements of the mass matrix
M. As discussed above in section Jacobian construction (matrix-based linear solvers), the accessor macros
SM_ELEMENT_B, SM_COLUMN_B, and SM_COLUMN_ELEMENT_B allow the user to read and write band ma-
trix elements without making specific references to the underlying representation of the SUNMATRIX_BAND
type. Similarly, the SUNMATRIX_BAND type and the accessor macros SM_ELEMENT_B, SM_COLUMN_B,
and SM_COLUMN_ELEMENT_ B are documented in the section 7he SUNMATRIX_BAND Module.

sparse:

A user-supplied sparse mass matrix function must load the compressed-sparse-column (CSR) or compressed-
sparse-row (CSR) matrix M with an approximation to the mass matrix M. Storage for M already exists on entry
to this function, although the user should ensure that sufficient space is allocated in M to hold the nonzero values
to be set; if the existing space is insufficient the user may reallocate the data and row index arrays as needed. The
type of M is SUNMATRIX_SPARSE, and the amount of allocated space in a SUNMATRIX_SPARSE object
may be accessed using the macro SM_NNZ_S or the routine SUNSparseMatrix_NNZ (). The SUNMA-
TRIX_SPARSE type is further documented in the section 7he SUNMATRIX_SPARSE Module.

4.6.15 Mass matrix-vector product (matrix-free linear solvers)

If a matrix-free linear solver is to be used for mass-matrix linear systems (i.e., a NULL-valued SUNMATRIX argument
was supplied to ARKStepSetMassLinearSolver () in the section A skeleton of the user’s main program), the
user must provide a function of type ARKLsMassTimesVecFn in the following form, to compute matrix-vector
products M.

typedef int (*ARKLsMassTimesVecFn) (N_Vector v, N_Vector Mv, realtype t, void* mtimes_data)
This function computes the product M * v (or an approximation to it).

Arguments:
* v — the vector to multiply.
* My — the output vector computed.
* t—the current value of the independent variable.

* mtimes_data — a pointer to user data, the same as the mtimes_data parameter that was passed to
ARKStepSetMassTimes ().

Return value: The value to be returned by the mass-matrix-vector product function should be 0 if successful.
Any other return value will result in an unrecoverable error of the generic Krylov solver, in which case the
integration is halted.

4.6.16 Mass matrix-vector product setup (matrix-free linear solvers)
If the user’s mass-matrix-times-vector routine requires that any mass matrix-related data be preprocessed or evaluated,
then this needs to be done in a user-supplied function of type ARKLsMassTimesSetupFn, defined as follows:

typedef int (*ARKLsMassTimesSetupFn) (realtype t, void* mtimes_data)
This function preprocesses and/or evaluates any mass-matrix-related data needed by the mass-matrix-times-
vector routine.

Arguments:

4.6. User-supplied functions 113

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

t — the current value of the independent variable.

mtimes_data — a pointer to user data, the same as the mtimes_data parameter that was passed to
ARKStepSetMassTimes ().

Return value: The value to be returned by the mass-matrix-vector setup function should be 0 if successful. Any
other return value will result in an unrecoverable error of the ARKLS mass matrix solver interface, in which
case the integration is halted.

4.6.17 Mass matrix preconditioner solve (iterative linear solvers)

If a user-supplied preconditioner is to be used with a SUNLINEAR solver module for mass matrix linear systems,
then the user must provide a function of type ARKLsMassPrecSolveFn to solve the linear system Pz = r, where
P may be either a left or right preconditioning matrix. Here P should approximate (at least crudely) the mass matrix
M. If preconditioning is done on both sides, the product of the two preconditioner matrices should approximate M.

typedef int (*ARKLsMassPrecSolveFn) (realtype ¢, N_Vector r, N_Vector z, realtype delta, int Ir,

void* user_data)

This function solves the preconditioner system Pz = r.

Arguments:

t — the current value of the independent variable.
r — the right-hand side vector of the linear system.
z — the computed output solution vector.

delta — an input tolerance to be used if an iterative method is employed in the solution. In that case,
the residual vector Res = r — Pz of the system should be made to be less than delfa in the weighted

1/2
l> norm, i.e. (Z?:l (Res; * ewt,;)Q) < 0, where 6 = delta. To obtain the N_Vector ewt, call
ARKStepGetErrwWeights ().

[r — an input flag indicating whether the preconditioner solve is to use the left preconditioner (Ir = 1)
or the right preconditioner (Ir = 2).

user_data — a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData ().

Return value: The value to be returned by the preconditioner solve function is a flag indicating whether it was
successful. This value should be 0 if successful, positive for a recoverable error (in which case the step will be
retried), or negative for an unrecoverable error (in which case the integration is halted).

4.6.18 Mass matrix preconditioner setup (iterative linear solvers)

If the user’s mass matrix preconditioner above requires that any problem data be preprocessed or evaluated, then these
actions need to occur within a user-supplied function of type ARKLsMassPrecSetupFn.

typedef int (*ARKLsMassPrecSetupFn) (realtype t, void* user_data)
This function preprocesses and/or evaluates mass-matrix-related data needed by the preconditioner.

Arguments:

t — the current value of the independent variable.

user_data — a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData ().

114

Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Return value: The value to be returned by the mass matrix preconditioner setup function is a flag indicating
whether it was successful. This value should be 0 if successful, positive for a recoverable error (in which case
the step will be retried), or negative for an unrecoverable error (in which case the integration is halted).

Notes: The operations performed by this function might include forming a mass matrix and performing an
incomplete factorization of the result. Although such operations would typically be performed only once at the
beginning of a simulation, these may be required if the mass matrix can change as a function of time.

If both this function and a ARKI.sMa s s TimesSetupFn are supplied, all calls to this function will be preceded
by a call to the ARKLsMassTimesSetupFn, so any setup performed there may be reused.

4.6.19 Vector resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatial adaptivity in a PDE simulation), the ARKStep integrator may be “resized” between integration steps, through
calls to the ARKStepResize () function. Typically, when performing adaptive simulations the solution is stored in
a customized user-supplied data structure, to enable adaptivity without repeated allocation/deallocation of memory. In
these scenarios, it is recommended that the user supply a customized vector kernel to interface between SUNDIALS
and their problem-specific data structure. If this vector kernel includes a function of type ARKVecResizeFn to
resize a given vector implementation, then this function may be supplied to ARKStepResize () so that all internal
ARKStep vectors may be resized, instead of deleting and re-creating them at each call. This resize function should
have the following form:

typedef int (*ARKVecResizeFn) (N_Vector y, N_Vector ytemplate, void* user_data)
This function resizes the vector y to match the dimensions of the supplied vector, ytemplate.

Arguments:
 y — the vector to resize.
* ytemplate — a vector of the desired size.

* user_data — a pointer to user data, the same as the resize_data parameter that was passed to
ARKStepResize ().

Return value: An ARKVecResizeFn function should return 0O if it successfully resizes the vector y, and a non-
zero value otherwise.

Notes: If this function is not supplied, then ARKStep will instead destroy the vector y and clone a new vector y
off of ytemplate.

4.7 Preconditioner modules

The efficiency of Krylov iterative methods for the solution of linear systems can be greatly enhanced through precon-
ditioning. For problems in which the user cannot define a more effective, problem-specific preconditioner, ARKode
provides two internal preconditioner modules that may be used by ARKStep: a banded preconditioner for serial and
threaded problems (ARKBANDPRE) and a band-block-diagonal preconditioner for parallel problems (ARKBBD-
PRE).

4.7.1 A serial banded preconditioner module

This preconditioner provides a band matrix preconditioner for use with iterative SUNLINSOL modules through the
ARKLS linear solver interface, in a serial or threaded setting. It requires that the problem be set up using either the
NVECTOR_SERIAL, NVECTOR_OPENMP or NVECTOR_PTHREADS module, due to data access patterns. It
also currently requires that the problem involve an identity mass matrix, i.e. M = I.

4.7. Preconditioner modules 115

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

This module uses difference quotients of the ODE right-hand side function f/ to generate a band matrix of bandwidth
ml + mu + 1, where the number of super-diagonals (mu, the upper half-bandwidth) and sub-diagonals (m1, the
lower half-bandwidth) are specified by the user. This band matrix is used to to form a preconditioner the Krylov linear
solver. Although this matrix is intended to approximate the Jacobian J = %—fl, it may be a very crude approximation,
since the true Jacobian may not be banded, or its true bandwidth may be larger than m1 + mu + 1. However, as
long as the banded approximation generated for the preconditioner is sufficiently accurate, it may speed convergence

of the Krylov iteration.

ARKBANDPRE usage

In order to use the ARKBANDPRE module, the user need not define any additional functions. In addition to the
header files required for the integration of the ODE problem (see the section Access to library and header files), to use
the ARKBANDPRE module, the user’s program must include the header file arkode_bandpre . h which declares
the needed function prototypes. The following is a summary of the usage of this module. Steps that are unchanged
from the skeleton program presented in A skeleton of the user’s main program are italicized.

1. Initialize multi-threaded environment (if appropriate)
. Set problem dimensions

. Set vector of initial values

. Create ARKStep object

. Specify integration tolerances

()Y B VS N S

. Create iterative linear solver object

When creating the iterative linear solver object, specify the type of preconditioning (PREC_LEFT or
PREC_RIGHT) to use.

7. Set linear solver optional inputs
8. Attach linear solver module
9. Initialize the ARKBANDPRE preconditioner module
Specify the upper and lower half-bandwidths (mu and m1, respectively) and call
ier = ARKBandPrecInit (arkode_mem, N, mu, ml);
to allocate memory and initialize the internal preconditioner data.
10. Set optional inputs

Note that the user should not call ARKStepSetPreconditioner () as it will overwrite the preconditioner
setup and solve functions.

11. Create nonlinear solver object

12. Attach nonlinear solver module

13. Set nonlinear solver optional inputs
14. Specify rootfinding problem

15. Advance solution in time

16. Get optional outputs

Additional optional outputs associated with ARKBANDPRE are available by way of the two routines described
below, ARKBandPrecGetWorkSpace () and ARKBandPrecGetNumRhsEvals ().

17. Deallocate memory for solution vector

116 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

18. Free solver memory

19. Free linear solver memory

ARKBANDPRE user-callable functions

The ARKBANDPRE preconditioner module is initialized and attached by calling the following function:

int ARKBandPrecInit (void* arkode_mem, sunindextype N, sunindextype mu, sunindextype ml)
Initializes the ARKBANDPRE preconditioner and allocates required (internal) memory for it.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* N — problem dimension (size of ODE system).
» mu — upper half-bandwidth of the Jacobian approximation.
* ml —lower half-bandwidth of the Jacobian approximation.
Return value:
e ARKLS SUCCESS if no errors occurred
* ARKLS_MEM_NULL if the ARKStep memory is NULL
e ARKLS_LMEM_NULL if the linear solver memory is NULL
* ARKLS_ILL_INPUT if an input has an illegal value
* ARKLS_MEM_FAIL if a memory allocation request failed

Notes: The banded approximate Jacobian will have nonzero elements only in locations (¢,) withml < j —¢ <
mu.

The following two optional output functions are available for use with the ARKBANDPRE module:

int ARKBandPrecGetWorkSpace (void* arkode_mem, long int* lenrwLS, long int* leniwLS)
Returns the sizes of the ARKBANDPRE real and integer workspaces.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

e lenrwLS — the number of realtype values in the ARKBANDPRE workspace.

¢ leniwLS — the number of integer values in the ARKBANDPRE workspace.
Return value:

e ARKLS SUCCESS if no errors occurred

* ARKLS_MEM_NULL if the ARKStep memory is NULL

e ARKLS_LMEM_NULL if the linear solver memory is NULL

* ARKLS_PMEM_NULL if the preconditioner memory is NULL

Notes: The workspace requirements reported by this routine correspond only to memory allocated within the
ARKBANDPRE module (the banded matrix approximation, banded SUNLinearSolver object, and tempo-
rary vectors).

The workspaces referred to here exist in addition to those given by the corresponding function
ARKStepGetLSWorkspace ().

4.7. Preconditioner modules 117

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

int ARKBandPrecGetNumRhsEvals (void* arkode_mem, long int* nfevalsBP)
Returns the number of calls made to the user-supplied right-hand side function f’ for constructing the finite-
difference banded Jacobian approximation used within the preconditioner setup function.

Arguments:
e arkode_mem — pointer to the ARKStep memory block.
* nfevalsBP — number of calls to f7.
Return value:
e ARKLS SUCCESS if no errors occurred
* ARKLS_MEM_NULL if the ARKStep memory is NULL
* ARKLS_LMEM_NULL if the linear solver memory is NULL
* ARKLS_PMEM_NULL if the preconditioner memory is NULL

Notes: The counter nfevalsBP is distinct from the counter nfevalsLS returned by the corresponding function
ARKStepGetNumLSRhsEvals () and also from nfi_evals returned by ARKStepGet NumRhsEvals ().
The total number of right-hand side function evaluations is the sum of all three of these counters, plus the
nfe_evals counter for f calls returned by ARKStepGet NumRhsEvals ().

4.7.2 A parallel band-block-diagonal preconditioner module

A principal reason for using a parallel ODE solver (such as ARKode) lies in the solution of partial differential equations
(PDEs). Moreover, Krylov iterative methods are used on many such problems due to the nature of the underlying linear
system of equations that needs to solved at each time step. For many PDEs, the linear algebraic system is large, sparse
and structured. However, if a Krylov iterative method is to be effective in this setting, then a nontrivial preconditioner
is required. Otherwise, the rate of convergence of the Krylov iterative method is usually slow, and degrades as the
PDE mesh is refined. Typically, an effective preconditioner must be problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of PDE-based problems. It has
been successfully used with CVODE for several realistic, large-scale problems [H77998]. It is included in a software
module within the ARKode package, and is accessible within the ARKStep time stepping module. This precondi-
tioning module works with the parallel vector module NVECTOR_PARALLEL and is usable with any of the Krylov
iterative linear solvers through the ARKLS interface. It generates a preconditioner that is a block-diagonal matrix with
each block being a band matrix. The blocks need not have the same number of super- and sub-diagonals and these
numbers may vary from block to block. This Band-Block-Diagonal Preconditioner module is called ARKBBDPRE.

One way to envision these preconditioners is to think of the computational PDE domain as being subdivided into
(2 non-overlapping subdomains, where each subdomain is assigned to one of the () MPI tasks used to solve the
ODE system. The basic idea is to isolate the preconditioning so that it is local to each process, and also to use a
(possibly cheaper) approximate right-hand side function for construction of this preconditioning matrix. This requires
the definition of a new function g(¢,y) ~ f!(¢,y) that will be used to construct the BBD preconditioner matrix. At
present, we assume that the ODE be written in explicit form as

Y= fE(tvy) + fI(t’y)»

where f! corresponds to the ODE components to be treated implicitly, i.e. this preconditioning module does not
support problems with non-identity mass matrices. The user may set ¢ = f7, if no less expensive approximation is
desired.

Corresponding to the domain decomposition, there is a decomposition of the solution vector y into () disjoint blocks
Yq¢» and a decomposition of g into blocks g,. The block g, depends both on y;,, and on components of blocks ¥,
associated with neighboring subdomains (so-called ghost-cell data). If we let 7/, denote y, augmented with those other

118 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

components on which g, depends, then we have

_ _ _ 1T
9t y) = [g1(t,91), 92, 92), - -, 90, YQ)] ™
and each of the blocks g, (t, §,) is decoupled from one another.

The preconditioner associated with this decomposition has the form
P = diag[P,, P, ..., Pg]
where
Py~1—1J,

and where J, is a difference quotient approximation to g%:. This matrix is taken to be banded, with upper and lower
half-bandwidths mudq and mldg defined as the number of non-zero diagonals above and below the main diagonal,
respectively. The difference quotient approximation is computed using mudq + mldg + 2 evaluations of g,,, but only
a matrix of bandwidth mukeep + mlkeep + 1 is retained. Neither pair of parameters need be the true half-bandwidths
of the Jacobian of the local block of g, if smaller values provide a more efficient preconditioner. The solution of the
complete linear system

Px=1b
reduces to solving each of the distinct equations
Puixqg=0bq, q¢=1,...,0,

and this is done by banded LU factorization of P, followed by a banded backsolve.

Similar block-diagonal preconditioners could be considered with different treatments of the blocks P;. For example,
incomplete LU factorization or an iterative method could be used instead of banded LU factorization.

ARKBBDPRE user-supplied functions

The ARKBBDPRE module calls two user-provided functions to construct P: a required function gloc (of type
ARKILocalFn ()) which approximates the right-hand side function g(t, %) ~ f!(t,y) and which is computed locally,
and an optional function cfn (of type ARKCommFn ()) which performs all inter-process communication necessary
to evaluate the approximate right-hand side g. These are in addition to the user-supplied right-hand side function f'.
Both functions take as input the same pointer user_data that is passed by the user to ARKStepSetUserData () and
that was passed to the user’s function f!. The user is responsible for providing space (presumably within user_data)
for components of y that are communicated between processes by cfnn, and that are then used by gloc, which should
not do any communication.

typedef int (*ARKLocalFn) (sunindextype Nlocal, realtype ¢~ N_Vector y, N_Vector glocal,

void* user_data)
This gloc function computes g(¢, y). It fills the vector glocal as a function of 7 and y.

Arguments:
* Nlocal — the local vector length.
¢ t—the value of the independent variable.
 y — the value of the dependent variable vector on this process.
* glocal — the output vector of g(¢,y) on this process.

e user_data — a pointer to user data, the same as the user_data parameter passed to
ARKStepSetUserData ().

4.7. Preconditioner modules 119

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Return value: An ARKLocalFn should return O if successful, a positive value if a recoverable error occurred
(in which case ARKStep will attempt to correct), or a negative value if it failed unrecoverably (in which case
the integration is halted and ARKStepEvolve () will return ARK_LSETUP_FAIL).

Notes: This function should assume that all inter-process communication of data needed to calculate glocal has
already been done, and that this data is accessible within user data.

The case where g is mathematically identical to f7 is allowed.

typedef int (*ARKCommF'n) (sunindextype Nlocal, realtype ¢, N_Vector y, void* user_data)

This cfn function performs all inter-process communication necessary for the execution of the gloc function
above, using the input vector y.

Arguments:
* Nlocal — the local vector length.
e ¢ —the value of the independent variable.
 y — the value of the dependent variable vector on this process.

e user_data — a pointer to user data, the same as the user_data parameter passed to
ARKStepSetUserData ().

Return value: An ARKCommFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case ARKStep will attempt to correct), or a negative value if it failed unrecoverably (in which case
the integration is halted and ARKStepEvolve () will return ARK_LSETUP_FAIL).

Notes: The cfn function is expected to save communicated data in space defined within the data structure
user_data.

Each call to the c¢fn function is preceded by a call to the right-hand side function f! with the same (¢,v)
arguments. Thus, ¢fn can omit any communication done by f! if relevant to the evaluation of glocal. If all
necessary communication was done in f, then cfin = NULL can be passed in the call to ARKBBDPrecInit ()
(see below).

ARKBBDPRE usage

In addition to the header files required for the integration of the ODE problem (see the section Access to library and
header files), to use the ARKBBDPRE module, the user’s program must include the header file arkode_bbdpre.h
which declares the needed function prototypes.

The following is a summary of the proper usage of this module. Steps that are unchanged from the skeleton program
presented in A skeleton of the user’s main program are italicized.

1.

Initialize MPI

. Set problem dimensions
. Set vector of initial values

2
3
4.
5
6

Create ARKStep object

. Specify integration tolerances

. Create iterative linear solver object

When creating the iterative linear solver object, specify the type of preconditioning (PREC_LEFT or
PREC_RIGHT) to use.

Set linear solver optional inputs

Attach linear solver module

120

Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

9.

10.

11.
12.
13.
14.
15.
16.

17.
18.
19.
20.

Initialize the ARKBBDPRE preconditioner module

Specify the upper and lower half-bandwidths for computation mudqg and m1ldg, the upper and lower half-
bandwidths for storage mukeep and mlkeep, and call

ier = ARKBBDPrecInit (arkode_mem, Nlocal, mudqg, mldg, mukeep, mlkeep,
dgrely, gloc, cfn);

to allocate memory and initialize the internal preconditioner data. The last two arguments of
ARKBBDPrecInit () are the two user-supplied functions of type ARKLocalFn () and ARKCommFn () de-
scribed above, respectively.

Set optional inputs

Note that the user should not call ARKStepSetPreconditioner () as it will overwrite the preconditioner
setup and solve functions.

Create nonlinear solver object
Attach nonlinear solver module

Set nonlinear solver optional inputs
Specify rootfinding problem
Advance solution in time

Get optional outputs

Additional optional outputs associated with ARKBBDPRE are available through the routines
ARKBBDPrecGetWorkSpace () and ARKBBDPrecGetNumGfnEvals ().

Deallocate memory for solution vector
Free solver memory
Free linear solver memory

Finalize MPI

ARKBBDPRE user-callable functions

The ARKBBDPRE preconditioner module is initialized (or re-initialized) and attached to the integrator by calling the
following functions:

int ARKBBDPrecInit (void* arkode_mem, sunindextype Nlocal, sunindextype mudg, sunindextype mldg,

sunindextype mukeep, sunindextype mlkeep, realtype dqrely, ARKLocalFn gloc, ARK-

CommFn cfn)
Initializes and allocates (internal) memory for the ARKBBDPRE preconditioner.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* Nlocal — local vector length.
* mudgq — upper half-bandwidth to be used in the difference quotient Jacobian approximation.
* mldg — lower half-bandwidth to be used in the difference quotient Jacobian approximation.
* mukeep — upper half-bandwidth of the retained banded approximate Jacobian block.
* mlkeep — lower half-bandwidth of the retained banded approximate Jacobian block.

* dgrely — the relative increment in components of y used in the difference quotient approximations.
The default is dgrely = +/unit roundoff, which can be specified by passing dgrely = 0.0.

4.7. Preconditioner modules 121

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

¢ gloc — the name of the C function (of type ARKLocalFn ()) which computes the approximation
g(t.y) = f1(ty).

* cfn — the name of the C function (of type ARKCommFn ()) which performs all inter-process commu-
nication required for the computation of g(¢, y).

Return value:
e ARKLS SUCCESS if no errors occurred
* ARKLS_MEM_NULL if the ARKStep memory is NULL
* ARKLS_LMEM_NULL if the linear solver memory is NULL
e ARKLS_ILL_INPUT if an input has an illegal value
* ARKLS_MEM_FAIL if a memory allocation request failed

Notes: If one of the half-bandwidths mudq or mldq to be used in the difference quotient calculation of the
approximate Jacobian is negative or exceeds the value Nlocal-1, it is replaced by 0 or Nlocal-1 accordingly.

The half-bandwidths mudg and mldg need not be the true half-bandwidths of the Jacobian of the local block of
g when smaller values may provide a greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate Jacobian block may be even
smaller than mudq and mldgq, to reduce storage and computational costs further.

For all four half-bandwidths, the values need not be the same on every processor.

The ARKBBDPRE module also provides a re-initialization function to allow solving a sequence of problems of the
same size, with the same linear solver choice, provided there is no change in Nlocal, mukeep, or mlkeep. After solving
one problem, and after calling ARKStepReInit () to re-initialize ARKStep for a subsequent problem, a call to
ARKBBDPrecReInit () can be made to change any of the following: the half-bandwidths mudq and mldg used in
the difference-quotient Jacobian approximations, the relative increment dgrely, or one of the user-supplied functions
gloc and cfn. If there is a change in any of the linear solver inputs, an additional call to the “Set” routines provided by
the SUNLINSOL module, and/or one or more of the corresponding ARKStepSet *» * functions, must also be made
(in the proper order).

int ARKBBDPrecReInit (void* arkode_mem, sunindextype mudg, sunindextype mldq, realtype dqrely)
Re-initializes the ARKBBDPRE preconditioner module.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* mudgq — upper half-bandwidth to be used in the difference quotient Jacobian approximation.
* mldg — lower half-bandwidth to be used in the difference quotient Jacobian approximation.

* dgrely — the relative increment in components of y used in the difference quotient approximations.
The default is dgrely = +/unit roundoff, which can be specified by passing dgrely = 0.0.

Return value:
e ARKLS SUCCESS if no errors occurred
* ARKLS_MEM_NULL if the ARKStep memory is NULL
* ARKLS_LMEM_NULL if the linear solver memory is NULL
* ARKLS_PMEM_NULL if the preconditioner memory is NULL

Notes: If one of the half-bandwidths mudq or mldg is negative or exceeds the value Nlocal-1, it is replaced by 0
or Nlocal-1 accordingly.

The following two optional output functions are available for use with the ARKBBDPRE module:

122 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

int ARKBBDPrecGetWorkSpace (void* arkode_mem, long int* lenrwBBDP, long int* leniwBBDP)
Returns the processor-local ARKBBDPRE real and integer workspace sizes.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* lenrwBBDP — the number of realtype values in the ARKBBDPRE workspace.

* leniwBBDP — the number of integer values in the ARKBBDPRE workspace.
Return value:

e ARKLS SUCCESS if no errors occurred

* ARKLS_MEM_NULL if the ARKStep memory is NULL

* ARKLS_LMEM_NULL if the linear solver memory is NULL

* ARKLS_PMEM_NULL if the preconditioner memory is NULL

Notes: The workspace requirements reported by this routine correspond only to memory allocated within the
ARKBBDPRE module (the banded matrix approximation, banded SUNLinearSolver object, temporary
vectors). These values are local to each process.

The workspaces referred to here exist in addition to those given by the corresponding function
ARKStepGetLSWorkSpace ().

int ARKBBDPrecGetNumGfnEvals (void* arkode_mem, long int* ngevalsBBDP)
Returns the number of calls made to the user-supplied gloc function (of type ARKLocalFn ()) due to the finite
difference approximation of the Jacobian blocks used within the preconditioner setup function.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* ngevalsBBDP — the number of calls made to the user-supplied gloc function.
Return value:

e ARKLS SUCCESS if no errors occurred

* ARKLS_MEM_NULL if the ARKStep memory is NULL

* ARKLS_LMEM_NULL if the linear solver memory is NULL

* ARKLS_PMEM_NULL if the preconditioner memory is NULL

In addition to the ngevalsBBDP gloc evaluations, the costs associated with ARKBBDPRE also include nlinsetups
LU factorizations, nlinsetups calls to cfn, npsolves banded backsolve calls, and nfevalsLS right-hand side function
evaluations, where nlinsetups is an optional ARKStep output and npsolves and nfevalsLS are linear solver optional
outputs (see the table Linear solver interface optional output functions).

4.7. Preconditioner modules 123

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

124 Chapter 4. Using ARKStep for C and C++ Applications

CHAPTER
FIVE

USING ERKSTEP FOR C AND C++ APPLICATIONS

This chapter is concerned with the use of the ERKStep time-stepping module for the solution of nonstiff initial value
problems (IVPs) in a C or C++ language setting. The following sections discuss the header files and the layout of the
user’s main program, and provide descriptions of the ERKStep user-callable functions and user-supplied functions.

The example programs described in the companion document /R2078] may be helpful. Those codes may be used as
templates for new codes and are included in the ARKode package examples subdirectory.

ERKStep uses the input and output constants from the shared ARKode infrastructure. These are defined as needed in
this chapter, but for convenience the full list is provided separately in the section Appendix: ARKode Constants.

The relevant information on using ERKStep’s C and C++ interfaces is detailed in the following sub-sections.

5.1 Access to library and header files

At this point, it is assumed that the installation of ARKode, following the procedure described in the section ARKode
Installation Procedure, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load commands must make
reference to the appropriate locations for the library and header files required by ARKode. The relevant library files
are

e libdir/libsundials_arkode.lib,
e libdir/libsundials_nvecx*.lib,

where the file extension . 11ib is typically . so for shared libraries and . a for static libraries. The relevant header files
are located in the subdirectories

e incdir/include/arkode
e incdir/include/sundials
e incdir/include/nvector

The directories 1ibdir and incdir are the installation library and include directories, respectively. For a default in-
stallation, these are instdir/lib and instdir/include, respectively, where instdir is the directory where
SUNDIALS was installed (see the section ARKode Installation Procedure for further details).

5.2 Data Types

The sundials_types.h file contains the definition of the variable type realtype, which is used by the SUN-
DIALS solvers for all floating-point data, the definition of the integer type sunindextype, which is used for vector
and matrix indices, and booleantype, which is used for certain logic operations within SUNDIALS.

125

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

5.2.1 Floating point types

The type “realtype” can be set to float, double, or long double, depending on how SUNDIALS was in-
stalled (with the default being double). The user can change the precision of the SUNDIALS solvers’ floating-point
arithmetic at the configuration stage (see the section Configuration options (Unix/Linux)).

Additionally, based on the current precision, sundials_types.h defines the values BIG_REAL to be the largest
value representable as a realtype, SMALL_REAL to be the smallest positive value representable as a realtype,
and UNIT_ROUNDOFF to be the smallest realtype number, ¢, such that 1.0 + ¢ # 1.0.

Within SUNDIALS, real constants may be set to have the appropriate precision by way of a macro called RCONST.
It is this macro that needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant
with no suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a f1oat,
whereas using the suffix “L” makes it a 1ong double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a f1oat constant equal to 1.0, and Ctobe a long double
constant equal to 1.0. The macro call RCONST (1.0) automatically expands to 1.0 if realtype is double, to
1.0Fif realtypeis float,orto 1.0Lif realtypeis long double. SUNDIALS uses the RCONST macro
internally to declare all of its floating-point constants.

A user program which uses the type realtype and the RCONST macro to handle floating-point constants is precision-
independent, except for any calls to precision-specific standard math library functions. Users can, however, use the
types double, float, or long double in their code (assuming that this usage is consistent with the size of
realtype values that are passed to and from SUNDIALS). Thus, a previously existing piece of ANSI C code
can use SUNDIALS without modifying the code to use realtype, so long as the SUNDIALS libraries have been
compiled using the same precision (for details see the section ARKode Installation Procedure).

5.2.2 Integer types used for vector and matrix indices

The type sunindextype can be either a 32- or 64-bit signed integer. The default is the portable int 64_t type,
and the user can change it to int 32_t at the configuration stage. The configuration system will detect if the compiler
does not support portable types, and will replace int32_t and int 64_t with int and long int, respectively, to
ensure use of the desired sizes on Linux, Mac OS X, and Windows platforms. SUNDIALS currently does not support
unsigned integer types for vector and matrix indices, although these could be added in the future if there is sufficient
demand.

A user program which uses sunindextype to handle vector and matrix indices will work with both index stor-
age types except for any calls to index storage-specific external libraries. (Our C and C++ example programs use
sunindextype.) Users can, however, use any one of int, long int, int32_t, int64_t or long long
int in their code, assuming that this usage is consistent with the typedef for sunindextype on their architec-
ture. Thus, a previously existing piece of ANSI C code can use SUNDIALS without modifying the code to use
sunindextype, so long as the SUNDIALS libraries use the appropriate index storage type (for details see the
section ARKode Installation Procedure).

5.3 Header Files

When using ERKStep, the calling program must include several header files so that various macros and data types can
be used. The header file that is always required is:

126 Chapter 5. Using ERKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

e arkode/arkode_erkstep.h, the main header file for the ERKStep time-stepping module, which
defines the several types and various constants, includes function prototypes, and includes the shared
arkode/arkode.h header file.

Note that arkode.h includes sundials_types.h directly, which defines the types realtype,
sunindextype and booleantype and the constants SUNFALSE and SUNTRUE, so a user program does not
need to include sundials_types.h directly.

Additionally, the calling program must also include an NVECTOR implementation header file, of the form
nvector/nvector_x*=.h, corresponding to the user’s preferred data layout and form of parallelism. See
the section Vector Data Structures for details for the appropriate name. This file in turn includes the header file
sundials_nvector.h which defines the abstract N_Vector data type.

5.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of an ODE IVP using
the ERKStep module. Most of the steps are independent of the NVECTOR implementation used. For the steps that
are not, refer to the section Vector Data Structures for the specific name of the function to be called or macro to be
referenced.

1. Initialize parallel or multi-threaded environment, if appropriate.

For example, call MPI_Init to initialize MPI if used, or set num_threads, the number of threads to use
within the threaded vector functions, if used.

2. Set problem dimensions, etc.

This generally includes the problem size, N, and may include the local vector length N1local.

Note: The variables N and N1ocal should be of type sunindextype.

3. Set vector of initial values

To set the vector y0 of initial values, use the appropriate functions defined by the particular NVECTOR imple-
mentation.

For native SUNDIALS vector implementations (except the CUDA and RAJA based ones), use a call of the form

y0 = N_VMake_x*x (..., ydata); ‘

if the realtype array ydata containing the initial values of y already exists. Otherwise, create a new vector
by making a call of the form

y0 = N_VNew_x*xxx(...);

and then set its elements by accessing the underlying data where it is located with a call of the form

ydata = N_VGetArrayPointer_xxx(y0); ‘

See the sections The NVECTOR_SERIAL Module through The NVECTOR_PTHREADS Module for details.

For the HYPRE and PETSc vector wrappers, first create and initialize the underlying vector, and then create the
NVECTOR wrapper with a call of the form

y0 = N_VMake_xxx (yvec);

where yvec is a HYPRE or PETSc vector. Note that calls like N_VNew_ *xx (...) and
N_VGetArrayPointer_«+x= (...) are not available for these vector wrappers. See the sections 7he
NVECTOR_PARHYP Module and The NVECTOR_PETSC Module for details.

5.4. A skeleton of the user’s main program 127

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

If using either the CUDA- or RAJA-based vector implementations use a call of the form

y0 = N_VMake_x**x (..., C);

where c is a pointer to a suncudavec or sunrajavec vector class if this class already exists. Otherwise,
create a new vector by making a call of the form

N_VGetDeviceArrayPointer_ x»*x*

or

N_VGetHostArrayPointer_ x*x*

Note that the vector class will allocate memory on both the host and device when instantiated. See the sections
The NVECTOR_CUDA Module and The NVECTOR_RAJA Module for details.

Create ERKStep object

Call arkode_mem = ERKStepCreate(...) to create the ERKStep memory block.
ERKStepCreate () returns a voids pointer to this memory structure. See the section ERKStep ini-
tialization and deallocation functions for details.

Specify integration tolerances

Call ERKStepSStolerances () or ERKStepSVtolerances () to specify either a scalar relative toler-
ance and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute tolerances, respectively.
Alternatively, call ERKStepWFtolerances () to specify a function which sets directly the weights used in
evaluating WRMS vector norms. See the section ERKStep tolerance specification functions for details.

Set optional inputs

Call ERKStepSet » functions to change any optional inputs that control the behavior of ERKStep from their
default values. See the section Optional input functions for details.

Specify rootfinding problem

Optionally, call ERKStepRootInit () to initialize a rootfinding problem to be solved during the integration
of the ODE system. See the section Rootfinding initialization function for general details, and the section
Optional input functions for relevant optional input calls.

Advance solution in time

For each point at which output is desired, call

ier = ERKStepEvolve (arkode_mem, tout, yout, &tret, itask);

10.

Here, itask specifies the return mode. The vector yout (which can be the same as the vector y0 above) will
contain y(teu). See the section ERKStep solver function for details.

Get optional outputs
Call ERKStepGet * functions to obtain optional output. See the section Optional output functions for details.
Deallocate memory for solution vector

Upon completion of the integration, deallocate memory for the vector y (or yout) by calling the NVECTOR
destructor function:

N_VDestroy (y) ;

11.

Free solver memory

Call ERKStepFree (&arkode_mem) to free the memory allocated for the ERKStep module.

128

Chapter 5. Using ERKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

12. Finalize MPI, if used

CallMPI_Finalize to terminate MPI.

5.5 ERKStep User-callable functions

This section describes the functions that are called by the user to setup and then solve an IVP using the ERKStep
time-stepping module. Some of these are required; however, starting with the section Optional input functions, the
functions listed involve optional inputs/outputs or restarting, and those paragraphs may be skipped for a casual use of
ARKode’s ERKStep module. In any case, refer to the preceding section, A skeleton of the user’s main program, for
the correct order of these calls.

On an error, each user-callable function returns a negative value (or NULL if the function returns a pointer) and sends
an error message to the error handler routine, which prints the message to st derr by default. However, the user can
set a file as error output or can provide her own error handler function (see the section Optional input functions for
details).

5.5.1 ERKStep initialization and deallocation functions

void* ERKStepCreate (ARKRAsFn f, realtype t0, N_Vector y0)
This function allocates and initializes memory for a problem to be solved using the ERKStep time-stepping
module in ARKode.

Arguments:

e f — the name of the C function (of type ARKRhsFn ()) defining the right-hand side function in ¢ =
ft,y).

* 10 — the initial value of ¢.

* y0 — the initial condition vector y(¢).

Return value: If successful, a pointer to initialized problem memory of type voidx, to be passed to all user-
facing ERKStep routines listed below. If unsuccessful, a NULL pointer will be returned, and an error message
will be printed to stderr.

void ERKStepFree (void** arkode_mem)
This function frees the problem memory arkode_mem created by ERKStepCreate ().

Arguments:
* arkode_mem — pointer to the ERKStep memory block.

Return value: None

5.5.2 ERKStep tolerance specification functions

These functions specify the integration tolerances. One of them should be called before the first call to
ERKStepEvolve (); otherwise default values of reltol = le-4 and abstol = 1le-9 will be used, which
may be entirely incorrect for a specific problem.

The integration tolerances reltol and abstol define a vector of error weights, ewt. In the case of
ERKStepSStolerances (), this vector has components

ewt[1] = 1.0/ (reltolxabs(y[i]) + abstol);

whereas in the case of ERKStepSVtolerances () the vector components are given by

5.5. ERKStep User-callable functions 129

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

‘ewt[i] = 1.0/ (reltolxabs(y[i]) + abstol[i]);

This vector is used in all error tests, which use a weighted RMS norm on all error-like vectors v:

L X 1/2
[vllwrms = <N Z(Ui 6wti)2>)

i=1
where N is the problem dimension.

Alternatively, the user may supply a custom function to supply the ewt vector, through a call to
ERKStepWFtolerances ().

int ERKStepSStolerances (void* arkode_mem, realtype reltol, realtype abstol)
This function specifies scalar relative and absolute tolerances.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* reltol — scalar relative tolerance.
* abstol — scalar absolute tolerance.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
* ARK_NO_MALLOC if the ERKStep memory was not allocated by the time-stepping module
* ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ERKStepSVtolerances (void* arkode_mem, realtype reltol, N_Vector abstol)
This function specifies a scalar relative tolerance and a vector absolute tolerance (a potentially different absolute
tolerance for each vector component).

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* reltol — scalar relative tolerance.
* abstol — vector containing the absolute tolerances for each solution component.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
* ARK_NO_MALLOC if the ERKStep memory was not allocated by the time-stepping module
* ARK_ILL _INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ERKStepWFtolerances (void* arkode_mem, ARKEwtFn efun)
This function specifies a user-supplied function efun to compute the error weight vector ewt.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.

* efun — the name of the function (of type ARKEwtFn ()) that implements the error weight vector
computation.

Return value:

130 Chapter 5. Using ERKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
* ARK_NO_MALLOC if the ERKStep memory was not allocated by the time-stepping module

General advice on the choice of tolerances

For many users, the appropriate choices for tolerance values in reltol and abstol are a concern. The following
pieces of advice are relevant.

1. The scalar relative tolerance reltol is to be set to control relative errors. So a value of 10~# means that errors
are controlled to .01%. We do not recommend using reltol larger than 1073, On the other hand, reltol
should not be so small that it is comparable to the unit roundoff of the machine arithmetic (generally around
10~'® for double-precision).

2. The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute errors when any
components of the solution vector y may be so small that pure relative error control is meaningless. For example,
if y; starts at some nonzero value, but in time decays to zero, then pure relative error control on y; makes no
sense (and is overly costly) after y; is below some noise level. Then abstol (if scalar) or abstol [i] (ifa
vector) needs to be set to that noise level. If the different components have different noise levels, then abstol
should be a vector. For example, see the example problem ark_robertson.c, and the discussion of it in
the ARKode Examples Documentation /R2018]. In that problem, the three components vary between O and 1,
and have different noise levels; hence the atols vector therein. It is impossible to give any general advice on
abstol values, because the appropriate noise levels are completely problem-dependent. The user or modeler
hopefully has some idea as to what those noise levels are.

3. Finally, it is important to pick all the tolerance values conservatively, because they control the error committed
on each individual step. The final (global) errors are an accumulation of those per-step errors, where that
accumulation factor is problem-dependent. A general rule of thumb is to reduce the tolerances by a factor of
10 from the actual desired limits on errors. So if you want .01% relative accuracy (globally), a good choice
for reltol is 107°. In any case, it is a good idea to do a few experiments with the tolerances to see how the
computed solution values vary as tolerances are reduced.

Advice on controlling nonphysical negative values

In many applications, some components in the true solution are always positive or non-negative, though at times very
small. In the numerical solution, however, small negative (nonphysical) values can then occur. In most cases, these
values are harmless, and simply need to be controlled, not eliminated, but in other cases any value that violates a
constraint may cause a simulation to halt. For both of these scenarios the following pieces of advice are relevant.

1. The best way to control the size of unwanted negative computed values is with tighter absolute tolerances. Again
this requires some knowledge of the noise level of these components, which may or may not be different for
different components. Some experimentation may be needed.

2. If output plots or tables are being generated, and it is important to avoid having negative numbers appear there
(for the sake of avoiding a long explanation of them, if nothing else), then eliminate them, but only in the context
of the output medium. Then the internal values carried by the solver are unaffected. Remember that a small
negative value in y returned by ERKStep, with magnitude comparable to abstol or less, is equivalent to zero
as far as the computation is concerned.

3. The user’s right-hand side routine f should never change a negative value in the solution vector y to a non-
negative value in attempt to “fix” this problem, since this can lead to numerical instability. If the f routine
cannot tolerate a zero or negative value (e.g. because there is a square root or log), then the offending value
should be changed to zero or a tiny positive number in a temporary variable (not in the input y vector) for the
purposes of computing f (¢, y).

5.5. ERKStep User-callable functions 131

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

4. Positivity and non-negativity constraints on components can be enforced by use of the recoverable error return
feature in the user-supplied right-hand side function, f. When a recoverable error is encountered, ERKStep will
retry the step with a smaller step size, which typically alleviates the problem. However, because this option
involves some additional overhead cost, it should only be exercised if the use of absolute tolerances to control
the computed values is unsuccessful.

5.5.3 Rootfinding initialization function

As described in the section Rootfinding, while solving the IVP, ARKode’s time-stepping modules have the capa-
bility to find the roots of a set of user-defined functions. To activate the root-finding algorithm, call the following
function. This is normally called only once, prior to the first call to ERKStepEvolve (), but if the rootfinding prob-
lem is to be changed during the solution, ERKStepRootInit () can also be called prior to a continuation call to
ERKStepEvolve ().

int ERKStepRoot Init (void* arkode_mem, int nrifn, ARKRootFn g)
Initializes a rootfinding problem to be solved during the integration of the ODE system. It must be called after
ERKStepCreate (), and before ERKStepEvolve ().

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* nrtfn — number of functions g;, an integer > 0.

* g —name of user-supplied function, of type ARKRootFn (), defining the functions g; whose roots
are sought.

Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
* ARK_MEM_FAIL if there was a memory allocation failure
e ARK_ILL_INPUT if nrifn is greater than zero but g = NULL.

Notes: To disable the rootfinding feature after it has already been initialized, or to free memory associated with
ERKStep’s rootfinding module, call ERKStepRootInit with nrtfn = 0.

Similarly, if a new IVP is to be solved with a call to ERKStepReInit (), where the new IVP has no rootfinding
problem but the prior one did, then call ERKStepRootInit with nritfn = 0.

5.5.4 ERKStep solver function

This is the central step in the solution process — the call to perform the integration of the IVP. One of the input
arguments (itask) specifies one of two modes as to where ERKStep is to return a solution. These modes are modified
if the user has set a stop time (with a call to the optional input function ERKStepSet StopTime ()) or has requested
rootfinding.

int ERKStepEvolve (void* arkode_mem, realtype tout, N_Vector yout, realtype *tret, int itask)
Integrates the ODE over an interval in ¢.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* tout — the next time at which a computed solution is desired.

* yout — the computed solution vector.

132 Chapter 5. Using ERKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

* tret — the time corresponding to yout (output).
* itask — a flag indicating the job of the solver for the next user step.

The ARK_NORMAL option causes the solver to take internal steps until it has just overtaken a user-
specified output time, tout, in the direction of integration, i.e. ¢,—1 < tout < t,, for forward inte-
gration, or ¢, < tout < t,_; for backward integration. It will then compute an approximation to
the solution y(tout) by interpolation (using one of the dense output routines described in the section
Interpolation).

The ARK_ONE_STEP option tells the solver to only take a single internal step y,—1 — ¥y, and then
return control back to the calling program. If this step will overtake fout then the solver will again
return an interpolated result; otherwise it will return a copy of the internal solution y,, in the vector
yout

Return value:
e ARK SUCCESS if successful.

e ARK_ROOT_RETURN if ERKStepEvolve () succeeded, and found one or more roots. If the num-
ber of root functions, nrtfn, is greater than 1, call ERKStepGetRootInfo () to see which g; were
found to have a root at (*tret).

* ARK_TSTOP_RETURN if ERKStepEvolve () succeeded and returned at zstop.
e ARK_MEM_NULL if the arkode_mem argument was NULL.
e ARK NO_MALLOC if arkode_mem was not allocated.

* ARK_ILL_INPUT if one of the inputs to ERKStepEvolve () is illegal, or some other input to the
solver was either illegal or missing. Details will be provided in the error message. Typical causes of
this failure:

1. A component of the error weight vector became zero during internal time-stepping.
2. A root of one of the root functions was found both at a point ¢ and also very near ¢.
3. The initial condition violates the inequality constraints.

* ARK_TOO_MUCH_WORK if the solver took mxstep internal steps but could not reach tout. The
default value for mxstep is MXSTEP_DEFAULT = 500.

* ARK_TOO_MUCH_ACC fif the solver could not satisfy the accuracy demanded by the user for some
internal step.

* ARK_ERR_FAILURE fif error test failures occurred either too many times (ark_maxnef) during one
internal time step or occurred with |h| = Rypin.

* ARK_VECTOROP_ERR a vector operation error occured.

Notes: The input vector yout can use the same memory as the vector y0 of initial conditions that was passed to
ERKStepCreate ().

In ARK_ONE_STEP mode, tout is used only on the first call, and only to get the direction and a rough scale of
the independent variable. All failure return values are negative and so testing the return argument for negative
values will trap all ERKStepEvolve () failures.

Since interpolation may reduce the accuracy in the reported solution, if full method accuracy is desired the user
should issue a call to ERKStepSetStopTime () before the call to ERKStepEvolve () to specify a fixed
stop time to end the time step and return to the user. Upon return from ERKStepEvolve (), a copy of the
internal solution y,, will be returned in the vector yout. Once the integrator returns at a tstop time, any future
testing for tstop is disabled (and can be re-enabled only though a new call to ERKStepSetStopTime ()).

5.5. ERKStep User-callable functions 133

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

On any error return in which one or more internal steps were taken by ERKStepEvolve (), the returned values
of tret and yout correspond to the farthest point reached in the integration. On all other error returns, tret and
yout are left unchanged from those provided to the routine.

5.5.5 Optional input functions

There are numerous optional input parameters that control the behavior of the ERKStep solver, each of which may
be modified from its default value through calling an appropriate input function. The following tables list all optional
input functions, grouped by which aspect of ERKStep they control. Detailed information on the calling syntax and
arguments for each function are then provided following each table.

The optional inputs are grouped into the following categories:
* General ERKStep options (Optional inputs for ERKStep),
* IVP method solver options (Optional inputs for IVP method selection),
* Step adaptivity solver options (Optional inputs for time step adaptivity),

For the most casual use of ERKStep, relying on the default set of solver parameters, the reader can skip to the following
section, User-supplied functions.

We note that, on an error return, all of the optional input functions send an error message to the error handler function.
We also note that all error return values are negative, so a test on the return arguments for negative values will catch
all errors.

Optional inputs for ERKStep

Optional input Function name Default
Return ERKStep solver parameters to their defaults | ERKStepSetDefaults () internal
Set dense output order ERKStepSetDenseOrder () 3

Supply a pointer to a diagnostics output file ERKStepSetDiagnostics () NULL
Supply a pointer to an error output file ERKStepSetErrFile () stderr
Supply a custom error handler function ERKStepSetErrHandlerFn () internal fn
Disable time step adaptivity (fixed-step mode) ERKStepSetFixedStep () disabled
Supply an initial step size to attempt ERKStepSetInitStep () estimated
Maximum no. of warnings for t,, + h = t,, ERKStepSetMaxHnilWarns () 10
Maximum no. of internal steps before tout ERKStepSetMaxNumSteps () 500
Maximum absolute step size ERKStepSetMaxStep () 00
Minimum absolute step size ERKStepSetMinStep () 0.0

Set a value for ., ERKStepSetStopTime () 00
Supply a pointer for user data ERKStepSetUserData () NULL
Maximum no. of ERKStep error test failures ERKStepSetMaxErrTestFails () 7

Set inequality constraints on solution ERKStepSetConstraints () NULL
Set max number of constraint failures ERKStepSetMaxNumConstrFails () | 10

int ERKStepSetDefaults (void* arkode_mem)

Resets all optional input parameters to ERKStep’s original default values.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

134 Chapter 5. Using ERKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

e ARK_ILL_INPUT if an argument has an illegal value
Notes: Does not change problem-defining function pointer f or the user_data pointer.

Also leaves alone any data structures or options related to root-finding (those can be reset using
ERKStepRootInit ()).

int ERKStepSetDenseOrder (void* arkode_mem, int dord)
Specifies the degree of the polynomial interpolant used for dense output (i.e. interpolation of solution output
values).

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* dord — requested polynomial order of accuracy.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes: Allowed values are between 0 and min (g, 5), where q is the order of the overall integration method.

int ERKStepSetDiagnostics (void* arkode_mem, FILE* diagfp)
Specifies the file pointer for a diagnostics file where all ERKStep step adaptivity and solver information is
written.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* diagfp — pointer to the diagnostics output file.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value

Notes: This parameter can be stdout or stderr, although the suggested approach is to specify a pointer to
a unique file opened by the user and returned by fopen. If not called, or if called with a NULL file pointer, all
diagnostics output is disabled.

When run in parallel, only one process should set a non-NULL value for this pointer, since statistics from all
processes would be identical.

int ERKStepSetErrFile (void* arkode_mem, FILE* errfp)
Specifies a pointer to the file where all ERKStep warning and error messages will be written if the default
internal error handling function is used.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* errfp — pointer to the output file.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL

5.5. ERKStep User-callable functions 135

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

e ARK_ILL_INPUT if an argument has an illegal value
Notes: The default value for errfp is stderr.

Passing a NULL value disables all future error message output (except for the case wherein the ERKStep memory
pointer is NULL). This use of the function is strongly discouraged.

If used, this routine should be called before any other optional input functions, in order to take effect for subse-
quent error messages.

int ERKStepSetErrHandlerFn (void* arkode_mem, ARKErrHandlerFn ehfun, void* eh_data)

Specifies the optional user-defined function to be used in handling error messages.
Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* ehfun — name of user-supplied error handler function.

* eh_data — pointer to user data passed to ehfun every time it is called.
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes: Error messages indicating that the ERKStep solver memory is NULL will always be directed to stderr.

int ERKStepSetFixedStep (void* arkode_mem, realtype hfixed)

Disabled time step adaptivity within ERKStep, and specifies the fixed time step size to use for all internal steps.
Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* hfixed — value of the fixed step size to use.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes: Pass 0.0 to return ERKStep to the default (adaptive-step) mode.

Use of this function is not recommended, since we it gives no assurance of the validity of the computed solutions.
It is primarily provided for code-to-code verification testing purposes.

When using ERKStepSetFixedStep(), any values provided to the functions
ERKStepSetInitStep (), ERKStepSetAdaptivityFn (), ERKStepSetMaxErrTestFails (),
ERKStepSetAdaptivityMethod (), ERKStepSetCFLFraction (), ERKStepSetErrorBias (),
ERKStepSetFixedStepBounds (), ERKStepSetMaxEFailGrowth (),
ERKStepSetMaxFirstGrowth (), ERKStepSetMaxGrowth (), ERKStepSetSafetyFactor(),
ERKStepSetSmallNumEFails () and ERKStepSetStabilityFn () will be ignored, since temporal
adaptivity is disabled.

If both ERKStepSetFixedStep () and ERKStepSetStopTime () are used, then the fixed step size will
be used for all steps until the final step preceding the provided stop time (which may be shorter). To resume
use of the previous fixed step size, another call to ERKStepSetFixedStep () must be made prior to calling
ERKStepEvolve () to resume integration.

136

Chapter 5. Using ERKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

It is not recommended that ERKStepSetFixedStep () be used in concert with ERKStepSetMaxStep ()
or ERKStepSetMinStep (), since at best those latter two routines will provide no useful information to the
solver, and at worst they may interfere with the desired fixed step size.

int ERKStepSetInitStep (void* arkode_mem, realtype hin)
Specifies the initial time step size ERKStep should use after initialization or re-initialization.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* hin — value of the initial step to be attempted (£ 0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value
Notes: Pass 0.0 to use the default value.

2.
By default, ERKStep estimates the initial step size to be the solution A of the equation H % H = 1, where yj is
an estimated value of the second derivative of the solution at 70.

int ERKStepSetMaxHnilWarns (void* arkode_mem, int mxhnil)
Specifies the maximum number of messages issued by the solver to warn that ¢ + A = t on the next internal
step, before ERKStep will instead return with an error.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* mxhnil — maximum allowed number of warning messages (> 0).
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value
Notes: The default value is 10; set mxhnil to zero to specify this default.
A negative value indicates that no warning messages should be issued.

int ERKStepSetMaxNumSteps (void* arkode_mem, long int mxsteps)
Specifies the maximum number of steps to be taken by the solver in its attempt to reach the next output time,
before ERKStep will return with an error.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* mxsteps — maximum allowed number of internal steps.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes: Passing mxsteps = 0 results in ERKStep using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

5.5. ERKStep User-callable functions 137

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

int ERKStepSetMaxStep (void* arkode_mem, realtype hmax)
Specifies the upper bound on the magnitude of the time step size.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* hmax — maximum absolute value of the time step size (> 0).
Return value:

* ARK_SUCCESS if successful

e ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value
Notes: Pass hmax < 0.0 to set the default value of oco.

int ERKStepSetMinStep (void* arkode_mem, realtype hmin)
Specifies the lower bound on the magnitude of the time step size.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* hmin — minimum absolute value of the time step size (> 0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value
Notes: Pass himin < 0.0 to set the default value of 0.

int ERKStepSetStopTime (void* arkode_mem, realtype tstop)
Specifies the value of the independent variable ¢ past which the solution is not to proceed.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* tstop — stopping time for the integrator.
Return value:
e ARK _SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes: The default is that no stop time is imposed.

int ERKStepSetUserData (void* arkode_mem, void* user_data)
Specifies the user data block user_data and attaches it to the main ERKStep memory block.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* user_data — pointer to the user data.

Return value:

e ARK SUCCESS if successful

138 Chapter 5. Using ERKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

* ARK_MEM_NULL if the ERKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes: If specified, the pointer to user_data is passed to all user-supplied functions for which it is an argument;
otherwise NULL is passed.

int ERKStepSetMaxErrTestFails (void* arkode_mem, int maxnef)
Specifies the maximum number of error test failures permitted in attempting one step, before returning with an
error.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* maxnef — maximum allowed number of error test failures (> 0).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value
Notes: The default value is 7; set maxnef < 0 to specify this default.

int ERKStepSetConstraints (void* arkode_mem, N_Vector constraints)
Specifies a vector defining inequality constraints for each component of the solution vector y.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.

* constraints — vector of constraint flags. If constraints[i] is

0.0 then no constraint is imposed on y;

1.0 then y; will be constrained to be y; > 0.0

-1.0 then y; will be constrained to be y; < 0.0

2.0 then y; will be constrained to be y; > 0.0
— -2.0 then y; will be constrained to be y; < 0.0
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
* ARK_ILL_INPUT if the constraints vector contains illegal values

Notes: The presence of a non-NULL constraints vector that is not 0.0 in all components will cause constraint
checking to be performed. However, a call with 0.0 in all components of constraints will result in an illegal
input return. A NULL constraints vector will disable constraint checking.

int ERKStepSetMaxNumConstrFails (void* arkode_mem, int maxfails)
Specifies the maximum number of constraint failures in a step before ERKStep will return with an error.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* maxfails — maximum allowed number of constrain failures.

Return value:

5.5. ERKStep User-callable functions 139

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL

Notes: Passing maxfails <= 0 results in ERKStep using the default value (10).

Optional inputs for IVP method selection

Optional input Function name Default
Set integrator method order ERKStepSetOrder () 4

Set explicit RK table ERKStepSetTable () internal
Specify explicit RK table number | ERKStepSetTableNum () | internal

int ERKStepSetOrder (void* arkode_mem, int ord)
Specifies the order of accuracy for the ERK integration method.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* ord — requested order of accuracy.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes: The allowed values are 2 < ord < 8. Any illegal input will result in the default value of 4.

Since ord affects the memory requirements for the internal ERKStep memory block, it cannot be changed after
the first call to ERKStepEvolve (), unless ERKStepReInit () is called.

int ERKStepSetTable (void* arkode_mem, ARKodeButcherTable B)
Specifies a customized Butcher table for the ERK method.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* B — the Butcher table for the explicit RK method.
Return value:
e ARK _SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value
Notes:

For a description of the ARKodeButcherTable type and related functions for creating Butcher tables see
Butcher Table Data Structure.

No error checking is performed to ensure that either the method order p or the embedding order g specified in
the Butcher table structure correctly describe the coefficients in the Butcher table.

Error checking is performed to ensure that the Butcher table is strictly lower-triangular (i.e. that it specifies an
ERK method).

If the Butcher table does not contain an embedding, the user must call ERKStepSetFixedStep () to enable
fixed-step mode and set the desired time step size.

140 Chapter 5. Using ERKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

int ERKStepSetTableNum (void* arkode_mem, int etable)
Indicates to use a specific built-in Butcher table for the ERK method.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* etable — index of the Butcher table.
Return value:
* ARK_SUCCESS if successful
e ARK_MEM_NULL if the ERKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value

Notes: etable should match an existing explicit method from the section Explicit Butcher tables. Error-checking
is performed to ensure that the table exists, and is not implicit.

Optional inputs for time step adaptivity

The mathematical explanation of ARKode’s time step adaptivity algorithm, including how each of the parameters
below is used within the code, is provided in the section Time step adaptivity.

Optional input Function name Default
Set a custom time step adaptivity function ERKStepSetAdaptivityFn () internal
Choose an existing time step adaptivity method | ERKStepSetAdaptivityMethod () | 0
Explicit stability safety factor ERKStepSetCFLFraction () 0.5
Time step error bias factor ERKStepSetErrorBias () 1.5
Bounds determining no change in step size ERKStepSetFixedStepBounds () 1.0 1.5
Maximum step growth factor on error test fail ERKStepSetMaxFEFailGrowth () 0.3
Maximum first step growth factor ERKStepSetMaxFirstGrowth () 10000.0
Maximum general step growth factor ERKStepSetMaxGrowth () 20.0
Time step safety factor ERKStepSetSafetyFactor () 0.96
Error fails before MaxEFailGrowth takes effect | ERKStepSet SmallNumEFails () 2
Explicit stability function ERKStepSetStabilityFn () none

int ERKStepSetAdaptivityFn (void* arkode_mem, ARKAdaptFn hfun, void* h_data)
Sets a user-supplied time-step adaptivity function.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* hfun — name of user-supplied adaptivity function.

* h_data — pointer to user data passed to hfun every time it is called.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value

Notes: This function should focus on accuracy-based time step estimation; for stability based time steps the
function ERKStepSetStabilityFn () should be used instead.

int ERKStepSetAdaptivityMethod (void* arkode_mem, int imethod, int idefault, int pq, real-
type* adapt_params)
Specifies the method (and associated parameters) used for time step adaptivity.

5.5. ERKStep User-callable functions 141

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Arguments:
* arkode_mem — pointer to the ERKStep memory block.

* imethod — accuracy-based adaptivity method choice (0 < imethod < 5): 0is PID, 1is PI, 21is I, 3 is
explicit Gustafsson, 4 is implicit Gustafsson, and 5 is the ImEx Gustafsson.

* idefault — flag denoting whether to use default adaptivity parameters (1), or that they will be supplied
in the adapt_params argument (0).

* pg — flag denoting whether to use the embedding order of accuracy p (0) or the method order of
accuracy ¢ (1) within the adaptivity algorithm. p is the default.

* adapt_params[0] — k, parameter within accuracy-based adaptivity algorithms.

* adapt_params[1] — ko parameter within accuracy-based adaptivity algorithms.

* adapt_params([2] — k3 parameter within accuracy-based adaptivity algorithms.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes: If custom parameters are supplied, they will be checked for validity against published stability intervals.
If other parameter values are desired, it is recommended to instead provide a custom function through a call to
ERKStepSetAdaptivityFn().

int ERKStepSetCFLFraction (void* arkode_mem, realtype cfl_frac)
Specifies the fraction of the estimated explicitly stable step to use.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* ¢fl_frac — maximum allowed fraction of explicitly stable step (default is 0.5).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value
Notes: Any non-positive parameter will imply a reset to the default value.

int ERKStepSetErrorBias (void* arkode_mem, realtype bias)
Specifies the bias to be applied to the error estimates within accuracy-based adaptivity strategies.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* bias — bias applied to error in accuracy-based time step estimation (default is 1.5).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes: Any value below 1.0 will imply a reset to the default value.

142 Chapter 5. Using ERKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

int ERKStepSetFixedStepBounds (void* arkode_mem, realtype Ib, realtype ub)
Specifies the step growth interval in which the step size will remain unchanged.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* [b —lower bound on window to leave step size fixed (default is 1.0).
* ub — upper bound on window to leave step size fixed (default is 1.5).
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value
Notes: Any interval not containing 1.0 will imply a reset to the default values.

int ERKStepSetMaxEFailGrowth (void* arkode_mem, realtype etamxf’)
Specifies the maximum step size growth factor upon multiple successive accuracy-based error failures in the
solver.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* etamxf — time step reduction factor on multiple error fails (default is 0.3).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value
Notes: Any value outside the interval (0, 1] will imply a reset to the default value.

int ERKStepSetMaxFirstGrowth (void* arkode_mem, realtype etamxl)
Specifies the maximum allowed step size change following the very first integration step.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

¢ etamx] — maximum allowed growth factor after the first time step (default is 10000.0).
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value
Notes: Any value < 1.0 will imply a reset to the default value.

int ERKStepSetMaxGrowth (void* arkode_mem, realtype mx_growth)
Specifies the maximum growth of the step size between consecutive steps in the integration process.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* growth — maximum allowed growth factor between consecutive time steps (default is 20.0).

Return value:

5.5. ERKStep User-callable functions 143

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value
Notes: Any value < 1.0 will imply a reset to the default value.

int ERKStepSetSafetyFactor (void* arkode_mem, realtype safety)
Specifies the safety factor to be applied to the accuracy-based estimated step.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* safety — safety factor applied to accuracy-based time step (default is 0.96).
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value
Notes: Any non-positive parameter will imply a reset to the default value.

int ERKStepSetSmallNumEFails (void* arkode_mem, int small_nef’)
Specifies the threshold for “multiple” successive error failures before the etamxf parameter from
ERKStepSetMaxEFailGrowth () is applied.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

e small_nef — bound to determine ‘multiple’ for efamxf (default is 2).
Return value:

* ARK_SUCCESS if successful

e ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value
Notes: Any non-positive parameter will imply a reset to the default value.

int ERKStepSetStabilityFn (void* arkode_mem, ARKExpStabFn EStab, void* estab_data)
Sets the problem-dependent function to estimate a stable time step size for the explicit portion of the ODE
system.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

» EStab — name of user-supplied stability function.

* estab_data — pointer to user data passed to EStab every time it is called.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

144 Chapter 5. Using ERKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Notes: This function should return an estimate of the absolute value of the maximum stable time step for the
the ODE system. It is not required, since accuracy-based adaptivity may be sufficient for retaining stability, but
this can be quite useful for problems where the right-hand side function f (¢, y) may contain stiff terms.

Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm, the mathematics of
which are described in the section Rootfinding.

Optional input Function name Default
Direction of zero-crossings to monitor | ERKStepSetRootDirection () both
Disable inactive root warnings ERKStepSetNoInactiveRootWarn () | enabled

int ERKStepSetRootDirection (void* arkode_mem, int* rootdir)
Specifies the direction of zero-crossings to be located and returned.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.

* rootdir — state array of length nrtfn, the number of root functions g; (the value of nrtfn was supplied
in the call to ERKStepRootInit ()). If rootdir[i] == O then crossing in either direction for
g; should be reported. A value of +1 or -1 indicates that the solver should report only zero-crossings
where g; is increasing or decreasing, respectively.

Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes: The default behavior is to monitor for both zero-crossing directions.

int ERKStepSetNoInactiveRootWarn (void* arkode_mem)
Disables issuing a warning if some root function appears to be identically zero at the beginning of the integration.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.
Return value:

e ARK _SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory is NULL

Notes: ERKStep will not report the initial conditions as a possible zero-crossing (assuming that one or more
components g; are zero at the initial time). However, if it appears that some g; is identically zero at the initial
time (i.e., g; is zero at the initial time and after the first step), ERKStep will issue a warning which can be
disabled with this optional input function.

5.5.6 Interpolated output function

An optional function ERKStepGetDky () is available to obtain additional values of solution-related quantities. This
function should only be called after a successful return from ERKStepEvolve (), as it provides interpolated values
either of y or of its derivatives (up to the 5th derivative) interpolated to any value of ¢ in the last internal step taken
by ERKStepEvolve (). Internally, this dense output algorithm is identical to the algorithm used for the maximum
order implicit predictors, described in the section Maximum order predictor, except that derivatives of the polynomial
model may be evaluated upon request.

5.5. ERKStep User-callable functions 145

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

int ERKStepGetDky (void* arkode_mem, realtype t, int k, N_Vector dky)

Computes the k-th derivative of the function y at the time #, i.e. %y(t), for values of the independent variable
satisfying ¢,, — h,, < t < t,,, with ¢,, as current internal time reached, and h,, is the last internal step size suc-
cessfully used by the solver. This routine uses an interpolating polynomial of degree max(dord, k), where dord is
the argument provided to ERKStepSetDenseOrder (). The user may request k in the range {0,...,*dord*}.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* ¢ —the value of the independent variable at which the derivative is to be evaluated.
* k — the derivative order requested.
* dky — output vector (must be allocated by the user).
Return value:
e ARK SUCCESS if successful
* ARK_BAD_K fif k is not in the range {0,...,*dord*}.
* ARK_BAD_T if t is not in the interval [t,, — Ay, t5]
* ARK_BAD_DKY if the dky vector was NULL
* ARK_MEM_NULL if the ERKStep memory is NULL
Notes: It is only legal to call this function after a successful return from ERKStepEvolve ().

A user may access the values ¢, and h, via the functions ERKStepGetCurrentTime () and
ERKStepGetLastStep (), respectively.

5.5.7 Optional output functions
ERKStep provides an extensive set of functions that can be used to obtain solver performance information. We
organize these into groups:

1. SUNDIALS version information accessor routines are in the subsection SUNDIALS version information,

2. General ERKStep output routines are in the subsection Main solver optional output functions,

3. Output routines regarding root-finding results are in the subsection Rootfinding optional output functions,

4

. General usability routines (e.g. to print the current ERKStep parameters, or output the current Butcher table)
are in the subsection General usability functions.

Following each table, we elaborate on each function.

Some of the optional outputs, especially the various counters, can be very useful in determining the efficiency of
various methods inside ERKStep. For example:

* The counters nsteps and nf_evals provide a rough measure of the overall cost of a given run, and can be compared
between runs with different solver options to suggest which set of options is the most efficient.

* The ratio nsteps/step_attempts can measure the quality of the time step adaptivity algorithm, since a poor algo-
rithm will result in more failed steps, and hence a lower ratio.

It is therefore recommended that users retrieve and output these statistics following each run, and take some time to
investigate alternate solver options that will be more optimal for their particular problem of interest.

146 Chapter 5. Using ERKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

SUNDIALS version information

The following functions provide a way to get SUNDIALS version information at runtime.

int SUNDIALSGetVersion (char *version, int len)
This routine fills a string with SUNDIALS version information.

Arguments:
* version — character array to hold the SUNDIALS version information.
* len — allocated length of the version character array.
Return value:
* 0 if successful
* -1 if the input string is too short to store the SUNDIALS version
Notes: An array of 25 characters should be sufficient to hold the version information.

int SUNDIALSGetVersionNumber (int *major, int *minor, int *patch, char *label, int len)
This routine sets integers for the SUNDIALS major, minor, and patch release numbers and fills a string with the
release label if applicable.

Arguments:
* major — SUNDIALS release major version number.
» minor — SUNDIALS release minor version number.
 patch — SUNDIALS release patch version number.
* label — string to hold the SUNDIALS release label.
¢ [en — allocated length of the label character array.
Return value:
* 0 if successful
* -1 if the input string is too short to store the SUNDIALS label

Notes: An array of 10 characters should be sufficient to hold the label information. If a label is not used in the
release version, no information is copied to label.

5.5. ERKStep User-callable functions 147

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Main solver optional output functions

Optional output Function name

Size of ERKStep real and integer workspaces ERKStepGetWorkSpace ()
Cumulative number of internal steps ERKStepGetNumSteps ()

Actual initial time step size used ERKStepGetActualInitStep ()
Step size used for the last successful step ERKStepGetLastStep ()

Step size to be attempted on the next step ERKStepGetCurrentStep ()
Current internal time reached by the solver ERKStepGetCurrentTime ()
Suggested factor for tolerance scaling ERKStepGetTolScaleFactor ()
Error weight vector for state variables ERKStepGetErrWeights ()

Single accessor to many statistics at once ERKStepGetStepStats ()

Name of constant associated with a return flag ERKStepGetReturnFlagName ()
No. of explicit stability-limited steps ERKStepGetNumExpSteps ()

No. of accuracy-limited steps ERKStepGetNumAccSteps ()

No. of attempted steps ERKStepGetNumStepAttempts ()
No. of calls to f function ERKStepGetNumRhsEvals ()

No. of local error test failures that have occurred | ERKStepGetNumErrTestFails ()
Current ERK Butcher table ERKStepGetCurrentButcherTable ()
Estimated local truncation error vector ERKStepGetEstLocalErrors ()
Single accessor to many statistics at once ERKStepGetTimestepperStats ()
Number of constraint test failures ERKStepGetNumConstrFails ()

int ERKStepGetWorkSpace (void* arkode_mem, long int* lenrw, long int* leniw)
Returns the ERKStep real and integer workspace sizes.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
e lenrw — the number of realtype values in the ERKStep workspace.
* leniw — the number of integer values in the ERKStep workspace.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetNumSteps (void* arkode_mem, long int* nsteps)
Returns the cumulative number of internal steps taken by the solver (so far).

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* nsteps — number of steps taken in the solver.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetActualInitStep (void* arkode_mem, realtype* hinused)
Returns the value of the integration step size used on the first step.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.

* hinused — actual value of initial step size.

148 Chapter 5. Using ERKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

Notes: Even if the value of the initial integration step was specified by the user through a call to
ERKStepSetInitStep (), this value may have been changed by ERKStep to ensure that the step size fell
within the prescribed bounds (Apin < ho < Amaz), Or to satisfy the local error test condition.

int ERKStepGetLastStep (void* arkode_mem, realtype* hlast)
Returns the integration step size taken on the last successful internal step.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* hlast — step size taken on the last internal step.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetCurrentStep (void* arkode_mem, realtype* hcur)
Returns the integration step size to be attempted on the next internal step.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* hcur — step size to be attempted on the next internal step.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetCurrentTime (void* arkode_mem, realtype* tcur)
Returns the current internal time reached by the solver.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* tcur — current internal time reached.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetTolScaleFactor (void* arkode_mem, realtype* tolsfac)
Returns a suggested factor by which the user’s tolerances should be scaled when too much accuracy has been
requested for some internal step.

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* tolsfac — suggested scaling factor for user-supplied tolerances.
Return value:

e ARK SUCCESS if successful

5.5. ERKStep User-callable functions 149

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

* ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetErrWeights (void* arkode_mem, N_Vector eweight)
Returns the current error weight vector.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* eweight — solution error weights at the current time.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
Notes: The user must allocate space for eweight, that will be filled in by this function.

int ERKStepGetStepStats (void* arkode_mem, long int* nsteps, realtype* hinused, realtype* hlast, real-
type* hcur, realtype™* tcur)
Returns many of the most useful optional outputs in a single call.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* nsteps — number of steps taken in the solver.
* hinused — actual value of initial step size.
* hlast — step size taken on the last internal step.
* hcur — step size to be attempted on the next internal step.
* tcur — current internal time reached.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

char *ERKStepGetReturnFlagName (long int flag)
Returns the name of the ERKStep constant corresponding to flag.

Arguments:
* flag — areturn flag from an ERKStep function.
Return value: The return value is a string containing the name of the corresponding constant.

int ERKStepGetNumExpSteps (void* arkode_mem, long int* expsteps)
Returns the cumulative number of stability-limited steps taken by the solver (so far).

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* expsteps — number of stability-limited steps taken in the solver.
Return value:

* ARK_SUCCESS if successful

e ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetNumAccSteps (void* arkode_mem, long int* accsteps)
Returns the cumulative number of accuracy-limited steps taken by the solver (so far).

150 Chapter 5. Using ERKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Arguments:

* arkode_mem — pointer to the ERKStep memory block.

* accsteps — number of accuracy-limited steps taken in the solver.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetNumStepAttempts (void* arkode_mem, long int* step_attempts)
Returns the cumulative number of steps attempted by the solver (so far).

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* step_attempts — number of steps attempted by solver.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetNumRhsEvals (void* arkode_mem, long int* nf_evals)
Returns the number of calls to the user’s right-hand side function, f (so far).

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* nf_evals — number of calls to the user’s f(¢,y) function.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetNumErrTestFails (void* arkode_mem, long int* netfails)
Returns the number of local error test failures that have occurred (so far).

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* netfails — number of error test failures.
Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetCurrentButcherTable (void* arkode_mem, ARKodeButcherTable *B)
Returns the Butcher table currently in use by the solver.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* B — pointer to Butcher table structure.

Return value:

e ARK SUCCESS if successful

5.5. ERKStep User-callable functions 151

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

* ARK_MEM_NULL if the ERKStep memory was NULL

Notes: The ARKodeButcherTable data structure is defined as a pointer to the following C structure:

typedef struct ARKodeButcherTableMem {

int qg; /* method order of accuracy x/
int p; /+ embedding order of accuracy */
int stages; /+ number of stages */
realtype *x*A; /* Butcher table coefficients x/
realtype xc; /+ canopy node coefficients */
realtype =*b; /* root node coefficients */
realtype =*d; /* embedding coefficients x/

} *ARKodeButcherTable;

For more details see :ref: ARKodeButcherTable .

int ERKStepGetEstLocalErrors (void* arkode_mem, N_Vector ele)

Returns the vector of estimated local truncation errors for the current step.
Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* ele — vector of estimated local truncation errors.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
Notes: The user must allocate space for ele, that will be filled in by this function.

The values returned in ele are valid only after a successful call to ERKStepEvolve () (i.e. it returned a
non-negative value).

The ele vector, together with the eweight vector from ERKStepGetErrifeights (), canbe used to determine
how the various components of the system contributed to the estimated local error test. Specifically, that error
test uses the WRMS norm of a vector whose components are the products of the components of these two
vectors. Thus, for example, if there were recent error test failures, the components causing the failures are those
with largest values for the products, denoted loosely as eweight [i] xele[1i].

int ERKStepGetTimestepperStats (void* arkode_mem, long int* expsteps, long int* accsteps, long

int* step_attempts, long int* nf_evals, long int* netfails)
Returns many of the most useful time-stepper statistics in a single call.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* expsteps — number of stability-limited steps taken in the solver.
* accsteps — number of accuracy-limited steps taken in the solver.
* step_attempts — number of steps attempted by the solver.
* nf_evals — number of calls to the user’s f(¢,y) function.
* netfails — number of error test failures.

Return value:

e ARK SUCCESS if successful

152

Chapter 5. Using ERKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

* ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetNumConstrFails (void* arkode_mem, long int* nconstrfails)
Returns the cumulative number of constraint test failures (so far).

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* nconstrfails — number of constraint test failures.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

Rootfinding optional output functions

Optional output Function name
Array showing roots found ERKStepGetRootInfo ()
No. of calls to user root function | ERKStepGet NumGEvals ()

int ERKStepGetRoot Info (void* arkode_mem, int* rootsfound)
Returns an array showing which functions were found to have a root.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.

* rootsfound — array of length nrifn with the indices of the user functions g; found to have a root
(the value of nrtfn was supplied in the call to ERKStepRootInit ()). Fori = 0... nrtfn-1,
rootsfound[i] is nonzero if g; has aroot, and 0 if not.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
Notes: The user must allocate space for rootsfound prior to calling this function.

For the components of g; for which a root was found, the sign of root sfound[1i] indicates the direction of
zero-crossing. A value of +1 indicates that g; is increasing, while a value of -1 indicates a decreasing g;.

int ERKStepGetNumGEvals (void* arkode_mem, long int* ngevals)
Returns the cumulative number of calls made to the user’s root function g.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* ngevals — number of calls made to g so far.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL

5.5. ERKStep User-callable functions 153

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

General usability functions

The following optional routines may be called by a user to inquire about existing solver parameters, to retrieve stored
Butcher tables, write the current Butcher table, or even to test a provided Butcher table to determine its analytical order
of accuracy. While none of these would typically be called during the course of solving an initial value problem, these
may be useful for users wishing to better understand ERKStep and/or specific Runge-Kutta methods.

Optional routine Function name
Output all ERKStep solver parameters | ERKSteplWriteParameters ()
Output the current Butcher table ERKStepWriteButcher ()

int ERKStepWriteParameters (void* arkode_mem, FILE *fp)
Outputs all ERKStep solver parameters to the provided file pointer.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* fp — pointer to use for printing the solver parameters.
Return value:
* ARKS _SUCCESS if successful
* ARKS_MEM_NULL if the ERKStep memory was NULL
Notes: The fp argument can be st dout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since parameters for all
processes would be identical.

int ERKStepWriteButcher (void* arkode_mem, FILE *fp)
Outputs the current Butcher table to the provided file pointer.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* fp — pointer to use for printing the Butcher table.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
Notes: The fp argument can be st dout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since tables for all pro-
cesses would be identical.

5.5.8 ERKStep re-initialization functions

To reinitialize the ERKStep module for the solution of a new problem, where a prior call to ERKStepCreate ()
has been made, the user must call the function ERKStepReInit (). The new problem must have the same size
as the previous one. This routine retains the current settings for all ARKstep module options and performs the same
input checking and initializations that are done in ERKStepCreate (), but it performs no memory allocation as is
assumes that the existing internal memory is sufficient for the new problem. A call to this re-initialization routine
deletes the solution history that was stored internally during the previous integration. Following a successful call to
ERKStepReInit (),call ERKStepEvolve () again for the solution of the new problem.

154 Chapter 5. Using ERKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

The use of ERKStepReInit () requires that the number of Runge Kutta stages, denoted by s, be no larger for the
new problem than for the previous problem. This condition is automatically fulfilled if the method order g and the
problem type (explicit, implicit, ImEx) are left unchanged.

One important use of the ERKStepReInit () function is in the treating of jump discontinuities in the RHS function.
Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and restart the
integrator with a readjusted ODE model, using a call to this routine. To stop when the location of the discontinuity is
known, simply make that location a value of tout. To stop when the location of the discontinuity is determined by the
solution, use the rootfinding feature. In either case, it is critical that the RHS function not incorporate the discontinuity,
but rather have a smooth extension over the discontinuity, so that the step across it (and subsequent rootfinding, if used)
can be done efficiently. Then use a switch within the RHS function (communicated through user_data) that can
be flipped between the stopping of the integration and the restart, so that the restarted problem uses the new values
(which have jumped). Similar comments apply if there is to be a jump in the dependent variable vector.

int ERKStepReInit (void* arkode_mem, ARKRhsFn f, realtype t0, N_Vector y0)
Provides required problem specifications and re-initializes the ERKStep time-stepper module.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.

* f — the name of the C function (of type ARKRhsFn ()) defining the right-hand side function in § =
fty).

¢ 10 — the initial value of ¢.
* y0 - the initial condition vector y(¢).
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
* ARK_MEM_FAIL if a memory allocation failed
* ARK_ILL_INPUT if an argument has an illegal value.
Notes: All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, ERKStepReInit () also sends an error message to the error handler function.

5.5.9 ERKStep system resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatially-adaptive PDE simulations under a method-of-lines approach), the ERKStep integrator may be “resized”
between integration steps, through calls to the ERKStepResize () function. This function modifies ERKStep’s
internal memory structures to use the new problem size, without destruction of the temporal adaptivity heuristics.
It is assumed that the dynamical time scales before and after the vector resize will be comparable, so that all time-
stepping heuristics prior to calling ERKStepResize () remain valid after the call. If instead the dynamics should
be recomputed from scratch, the ERKStep memory structure should be deleted with a call to ERKStepFree (), and
recreated with a call to ERKStepCreate ().

To aid in the vector resize operation, the user can supply a vector resize function that will take as input a vector with
the previous size, and transform it in-place to return a corresponding vector of the new size. If this function (of type
ARKVecResizeFn ()) is not supplied (i.e. is set to NULL), then all existing vectors internal to ERKStep will be
destroyed and re-cloned from the new input vector.

In the case that the dynamical time scale should be modified slightly from the previous time scale, an input Ascale is
allowed, that will rescale the upcoming time step by the specified factor. If a value Ascale < 0 is specified, the default
of 1.0 will be used.

5.5. ERKStep User-callable functions 155

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

int ERKStepResize (void* arkode_mem, N_Vector ynew, realtype hscale, realtype t0, ARKVecResizeFn re-

size, void* resize_data)
Re-initializes ERKStep with a different state vector but with comparable dynamical time scale.

Arguments:
* arkode_mem — pointer to the ERKStep memory block.
* ynew — the newly-sized solution vector, holding the current dependent variable values y (o).

* hscale — the desired scaling factor for the dynamical time scale (i.e. the next step will be of size
h*hscale).

* 10 — the current value of the independent variable ¢, (this must be consistent with ynew).
* resize — the user-supplied vector resize function (of type ARKVecResizeFn ().

* resize_data — the user-supplied data structure to be passed to resize when modifying internal ERKStep
vectors.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ERKStep memory was NULL
e ARK_NO_MALLOC if arkode_mem was not allocated.
* ARK_ILL_INPUT if an argument has an illegal value.

Notes: If an error occurred, ERKStepResize () also sends an error message to the error handler function.

Resizing the absolute tolerance array

If using array-valued absolute tolerances, the absolute tolerance vector will be invalid after the call
to ERKStepResize (), so the new absolute tolerance vector should be re-set following each call to
ERKStepResize () through a new call to ERKStepSVtolerances ().

If scalar-valued tolerances or a tolerance function was specified through either ERKStepSStolerances () or
ERKStepWFtolerances (), then these will remain valid and no further action is necessary.

Note: For an example showing usage of the similar ARKStepResize () routine, see the supplied serial C example
problem, ark_heat1D_adapt.c.

5.6 User-supplied functions

The user-supplied functions for ERKStep consist of:
* a function that defines the ODE (required),
« a function that handles error and warning messages (optional),
* afunction that provides the error weight vector (optional),
* a function that handles adaptive time step error control (optional),
* a function that handles explicit time step stability (optional),
* a function that defines the root-finding problem(s) to solve (optional),

* afunction that handles vector resizing operations, if the underlying vector structure supports resizing (as opposed
to deletion/recreation), and if the user plans to call ERKStepResize () (optional).

156 Chapter 5. Using ERKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

5.6.1 ODE right-hand side

The user must supply a function of type ARKRhsFn to specify the right-hand side of the ODE system:

typedef int (*ARKRhsFn) (realtype t, N_Vector y, N_Vector ydot, void* user_data)
This function computes the ODE right-hand side for a given value of the independent variable ¢ and state vector

Y.
Arguments:

* ¢ —the current value of the independent variable.

 y — the current value of the dependent variable vector.

* ydot — the output vector that forms the ODE RHS f (¢, y).

* user_data — the user_data pointer that was passed to ERKStepSetUserData ().

Return value: An ARKRhsFn should return O if successful, a positive value if a recoverable error occurred (in
which case ERKStep will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and ARK_RHSFUNC_FAIL is returned).

Notes: Allocation of memory for ydot is handled within the ERKStep module. A recoverable failure error
return from the ARKRhsFn is typically used to flag a value of the dependent variable y that is “illegal” in
some way (e.g., negative where only a non-negative value is physically meaningful). If such a return is made,
ERKStep will attempt to recover by reducing the step size in order to avoid this recoverable error return. There
are some situations in which recovery is not possible even if the right-hand side function returns a recoverable
error flag. One is when this occurs at the very first call to the ARKRhsFn (in which case ERKStep returns
ARK_FIRST _RHSFUNC_ERR).

5.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed to by errfp (see
ERKStepSetErrFile ()), the user may provide a function of type ARKErrHandlerFn to process any such
messages.

typedef void (*ARKErrHandlerFn) (int error_code, const char* module, const char* function, char* msg,

) void* user_data)
This function processes error and warning messages from ERKStep and its sub-modules.

Arguments:
* error_code — the error code.
* module — the name of the ERKStep module reporting the error.
* function — the name of the function in which the error occurred.
* msg — the error message.

* user_data — a pointer to user data, the same as the eh_data parameter that was passed to
ERKStepSetErrHandlerFn ().

Return value: An ARKErrHandlerFn function has no return value.

Notes: error_code is negative for errors and positive (ARK_WARNING) for warnings. If a function that returns
a pointer to memory encounters an errot, it sets error_code to 0.

5.6. User-supplied functions 157

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

5.6.3 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function of type ARKEwt Fn

1/2
to compute a vector ewt containing the weights in the WRMS norm ||v||wrys = (% S (ewt; vi)2) . These
weights will be used in place of those defined in the section Error norms.

typedef int (*ARKEwtFn) (N_Vector y, N_Vector ewt, void* user_data)
This function computes the WRMS error weights for the vector y.

Arguments:
» y—the dependent variable vector at which the weight vector is to be computed.
* ewt — the output vector containing the error weights.

* user_data — a pointer to user data, the same as the user_data parameter that was passed to
ERKStepSetUserData ().

Return value: An ARKEwtFn function must return 0 if it successfully set the error weights, and -1 otherwise.
Notes: Allocation of memory for ewt is handled within ERKStep.

The error weight vector must have all components positive. It is the user’s responsibility to perform this test and
return -1 if it is not satisfied.

5.6.4 Time step adaptivity function

As an alternative to using one of the built-in time step adaptivity methods for controlling solution error, the user may
provide a function of type ARKAdaptFn to compute a target step size h for the next integration step. These steps
should be chosen as the maximum value such that the error estimates remain below 1.

typedef int (*ARKAdaptFn) (N_Vector y, realtype ¢, realtype hl, realtype h2, realtype h3, realtype el, real-

type e2, realtype €3, int ¢, int p, realtype* hnew, void* user_data)
This function implements a time step adaptivity algorithm that chooses h satisfying the error tolerances.

Arguments:
* y — the current value of the dependent variable vector.
* ¢ —the current value of the independent variable.
e hl — the current step size, t,, — t,—1.
* h2 — the previous step size, t,—1 — t,—o.
e h3 —the step size t,,—o — t,,—3.
* ¢l — the error estimate from the current step, n.
* e2 — the error estimate from the previous step, n — 1.
* e3 —the error estimate from the step n — 2.
* g — the global order of accuracy for the method.
¢ p —the global order of accuracy for the embedded method.
* hnew — the output value of the next step size.

* user_data — a pointer to user data, the same as the h_data parameter that was passed to
ERKStepSetAdaptivityFn /().

Return value: An ARKAdaptFn function should return 0 if it successfully set the next step size, and a non-zero
value otherwise.

158 Chapter 5. Using ERKStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

5.6.5 Explicit stability function

A user may supply a function to predict the maximum stable step size for the explicit Runge Kutta method on this
problem. While the accuracy-based time step adaptivity algorithms may be sufficient for retaining a stable solution
to the ODE system, these may be inefficient if f(¢,y) contains moderately stiff terms. In this scenario, a user may
provide a function of type ARKExpStabFn to provide this stability information to ERKStep. This function must
set the scalar step size satisfying the stability restriction for the upcoming time step. This value will subsequently be
bounded by the user-supplied values for the minimum and maximum allowed time step, and the accuracy-based time
step.

typedef int (*ARKExpStabFn) (N_Vector y, realtype , realtype* hstab, void* user_data)
This function predicts the maximum stable step size for the ODE system.

Arguments:
* y — the current value of the dependent variable vector.
* t—the current value of the independent variable.
* hstab — the output value with the absolute value of the maximum stable step size.

* user_data — a pointer to user data, the same as the estab_data parameter that was passed to
ERKStepSetStabilityFn ().

Return value: An ARKExpStabFn function should return 0 if it successfully set the upcoming stable step size,
and a non-zero value otherwise.

Notes: If this function is not supplied, or if it returns hstab < 0.0, then ERKStep will assume that there is no
explicit stability restriction on the time step size.

5.6.6 Rootfinding function
If a rootfinding problem is to be solved during the integration of the ODE system, the user must supply a function of
type ARKRootFn.

typedef int (*ARKRootFn) (realtype , N_Vector y, realtype* gout, void* user_data)
This function implements a vector-valued function g(¢, y) such that the roots of the nrifn components g;(t,y)
are sought.

Arguments:
* ¢t —the current value of the independent variable.
 y — the current value of the dependent variable vector.
* gout — the output array, of length nrifn, with components g;(¢, y).

* user_data — a pointer to user data, the same as the user_data parameter that was passed to
ERKStepSetUserData ().

Return value: An ARKRootFn function should return O if successful or a non-zero value if an error occurred
(in which case the integration is halted and ERKStep returns ARK_RTFUNC_FAIL).

Notes: Allocation of memory for gout is handled within ERKStep.

5.6.7 Vector resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatial adaptivity in a PDE simulation), the ERKStep integrator may be “resized” between integration steps, through
calls to the ERKStepResize () function. Typically, when performing adaptive simulations the solution is stored in

5.6. User-supplied functions 159

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

a customized user-supplied data structure, to enable adaptivity without repeated allocation/deallocation of memory. In
these scenarios, it is recommended that the user supply a customized vector kernel to interface between SUNDIALS
and their problem-specific data structure. If this vector kernel includes a function of type ARKVecResizeFn to
resize a given vector implementation, then this function may be supplied to ERKStepResize () so that all internal
ERKStep vectors may be resized, instead of deleting and re-creating them at each call. This resize function should
have the following form:

typedef int (*xARKVecResizeFn) (N_Vector y, N_Vector ytemplate, void* user_data)
This function resizes the vector y to match the dimensions of the supplied vector, ytemplate.

Arguments:
¢ y — the vector to resize.
* ytemplate — a vector of the desired size.

* user_data — a pointer to user data, the same as the resize_data parameter that was passed to
ERKStepResize ().

Return value: An ARKVecResizeFn function should return O if it successfully resizes the vector y, and a non-
zero value otherwise.

Notes: If this function is not supplied, then ERKStep will instead destroy the vector y and clone a new vector y
off of ytemplate.

160 Chapter 5. Using ERKStep for C and C++ Applications

CHAPTER
SIX

USING MRISTEP FOR C AND C++ APPLICATIONS

This chapter is concerned with the use of the MRIStep time-stepping module for the solution of two-rate initial value
problems (IVPs) in a C or C++ language setting. The following sections discuss the header files and the layout of the
user’s main program, and provide descriptions of the MRIStep user-callable functions and user-supplied functions.

The example programs described in the companion document /R2078] may be helpful. Those codes may be used as
templates for new codes and are included in the ARKode package examples subdirectory.

MRIStep uses the input and output constants from the shared ARKode infrastructure. These are defined as needed in
this chapter, but for convenience the full list is provided separately in the section Appendix: ARKode Constants.

The relevant information on using MRIStep’s C and C++ interfaces is detailed in the following sub-sections.

6.1 Access to library and header files

At this point, it is assumed that the installation of ARKode, following the procedure described in the section ARKode
Installation Procedure, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load commands must make
reference to the appropriate locations for the library and header files required by ARKode. The relevant library files
are

e libdir/libsundials_arkode.lib,
e libdir/libsundials_nvecx*.lib,

where the file extension . 11ib is typically . so for shared libraries and . a for static libraries. The relevant header files
are located in the subdirectories

e incdir/include/arkode
e incdir/include/sundials
e incdir/include/nvector

The directories 1ibdir and incdir are the installation library and include directories, respectively. For a default in-
stallation, these are instdir/lib and instdir/include, respectively, where instdir is the directory where
SUNDIALS was installed (see the section ARKode Installation Procedure for further details).

6.2 Data Types

The sundials_types.h file contains the definition of the variable type realtype, which is used by the SUN-
DIALS solvers for all floating-point data, the definition of the integer type sunindextype, which is used for vector
and matrix indices, and booleantype, which is used for certain logic operations within SUNDIALS.

161

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

6.2.1 Floating point types

The type “realtype” can be set to float, double, or long double, depending on how SUNDIALS was in-
stalled (with the default being double). The user can change the precision of the SUNDIALS solvers’ floating-point
arithmetic at the configuration stage (see the section Configuration options (Unix/Linux)).

Additionally, based on the current precision, sundials_types.h defines the values BIG_REAL to be the largest
value representable as a realtype, SMALL_REAL to be the smallest positive value representable as a realtype,
and UNIT_ROUNDOFF to be the smallest realtype number, ¢, such that 1.0 + ¢ # 1.0.

Within SUNDIALS, real constants may be set to have the appropriate precision by way of a macro called RCONST.
It is this macro that needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant
with no suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a f1oat,
whereas using the suffix “L” makes it a 1ong double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a f1oat constant equal to 1.0, and Ctobe a long double
constant equal to 1.0. The macro call RCONST (1.0) automatically expands to 1.0 if realtype is double, to
1.0Fif realtypeis float,orto 1.0Lif realtypeis long double. SUNDIALS uses the RCONST macro
internally to declare all of its floating-point constants.

A user program which uses the type realtype and the RCONST macro to handle floating-point constants is precision-
independent, except for any calls to precision-specific standard math library functions. Users can, however, use the
types double, float, or long double in their code (assuming that this usage is consistent with the size of
realtype values that are passed to and from SUNDIALS). Thus, a previously existing piece of ANSI C code
can use SUNDIALS without modifying the code to use realtype, so long as the SUNDIALS libraries have been
compiled using the same precision (for details see the section ARKode Installation Procedure).

6.2.2 Integer types used for vector and matrix indices

The type sunindextype can be either a 32- or 64-bit signed integer. The default is the portable int 64_t type,
and the user can change it to int 32_t at the configuration stage. The configuration system will detect if the compiler
does not support portable types, and will replace int32_t and int 64_t with int and long int, respectively, to
ensure use of the desired sizes on Linux, Mac OS X, and Windows platforms. SUNDIALS currently does not support
unsigned integer types for vector and matrix indices, although these could be added in the future if there is sufficient
demand.

A user program which uses sunindextype to handle vector and matrix indices will work with both index stor-
age types except for any calls to index storage-specific external libraries. (Our C and C++ example programs use
sunindextype.) Users can, however, use any one of int, long int, int32_t, int64_t or long long
int in their code, assuming that this usage is consistent with the typedef for sunindextype on their architec-
ture. Thus, a previously existing piece of ANSI C code can use SUNDIALS without modifying the code to use
sunindextype, so long as the SUNDIALS libraries use the appropriate index storage type (for details see the
section ARKode Installation Procedure).

6.3 Header Files

When using MRIStep, the calling program must include several header files so that various macros and data types can
be used. The header file that is always required is:

162 Chapter 6. Using MRIStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

* arkode/arkode_mristep.h, the main header file for the MRIStep time-stepping module, which
defines the several types and various constants, includes function prototypes, and includes the shared
arkode/arkode.h header file.

Note that arkode.h includes sundials_types.h directly, which defines the types realtype,
sunindextype, and booleantype and the constants SUNFALSE and SUNTRUE, so a user program does not
need to include sundials_types.h directly.

Additionally, the calling program must also include an NVECTOR implementation header file, of the form
nvector/nvector_x*=.h, corresponding to the user’s preferred data layout and form of parallelism. See
the section Vector Data Structures for details for the appropriate name. This file in turn includes the header file
sundials_nvector.h which defines the abstract N_Vector data type.

6.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of an ODE IVP using
the MRIStep module. Most of the steps are independent of the NVECTOR implementation used. For the steps that
are not, refer to the section Vector Data Structures for the specific name of the function to be called or macro to be
referenced.

1. Initialize parallel or multi-threaded environment, if appropriate.

For example, call MPI_Init to initialize MPI if used, or set num_threads, the number of threads to use
within the threaded vector functions, if used.

2. Set problem dimensions, etc.

This generally includes the problem size, N, and may include the local vector length N1local.

Note: The variables N and N1ocal should be of type sunindextype.

3. Set vector of initial values

To set the vector y0 of initial values, use the appropriate functions defined by the particular NVECTOR imple-
mentation.

For native SUNDIALS vector implementations (except the CUDA and RAJA based ones), use a call of the form

y0 = N_VMake_x*x (..., ydata); ‘

if the realtype array ydata containing the initial values of y already exists. Otherwise, create a new vector
by making a call of the form

y0 = N_VNew_x*xxx(...);

and then set its elements by accessing the underlying data where it is located with a call of the form

ydata = N_VGetArrayPointer_xxx(y0); ‘

See the sections The NVECTOR_SERIAL Module through The NVECTOR_PTHREADS Module for details.

For the HYPRE and PETSc vector wrappers, first create and initialize the underlying vector, and then create the
NVECTOR wrapper with a call of the form

y0 = N_VMake_xxx (yvec);

where yvec is a HYPRE or PETSc vector. Note that calls like N_VNew_ *xx (...) and
N_VGetArrayPointer_«+x= (...) are not available for these vector wrappers. See the sections 7he
NVECTOR_PARHYP Module and The NVECTOR_PETSC Module for details.

6.4. A skeleton of the user’s main program 163

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

If using either the CUDA- or RAJA-based vector implementations use a call of the form

y0 = N_VMake_x**x (..., C);

where c is a pointer to a suncudavec or sunrajavec vector class if this class already exists. Otherwise,
create a new vector by making a call of the form

N_VGetDeviceArrayPointer_ x»*x*

or

N_VGetHostArrayPointer_ x*x*

Note that the vector class will allocate memory on both the host and device when instantiated. See the sections
The NVECTOR_CUDA Module and The NVECTOR_RAJA Module for details.

Create an ARKStep object for the fast (inner) integration

Call inner_arkode_mem = ARKStepCreate(...) to create the ARKStep memory block.
ARKStepCreate () returns a void« pointer to this memory structure. See the section ARKStep initialization
and deallocation functions for details.

Configure the fast (inner) integrator

Specify tolerances, create and attach matrix and/or solver objects, or call ARKStepSet x functions to configure
the fast integrator as desired. See sections A skeleton of the user’s main program and Optional input functions
for details on configuring ARKStep.

Notes on using ARKStep as a fast integrator:

If the inner method is not explicitly specified then the default method in the ARKStep module will be used. If
a particular fast method is desired it should be set in this step. The slow method can be set when configuring the
slow integrator in the following steps.

By default the fast integrator will use adaptive step sizes. To use a fixed fast step a call to
ARKStepSetFixedStep () should be made in this step otherwise fast integration tolerances should be set
in this step as described in A skeleton of the user’s main program.

If a user_data pointer needs to be passed to user functions called by the fast (inner) integrator then it should be
attached here by calling ARKStepSetUserData (). This user_data pointer will only be passed to user-
supplied functions that are attached to the fast (inner) integrator. To supply a user_data pointer to user-
supplied functions called by the slow (outer) integrator the desired pointer should be attached by calling
MRIStepSetUserData () after creating the MRIStep memory below. Note the user_data pointers attached
to the inner and outer integrators may be the same or different depending on what is required by the user code.

Specifying a rootfinding problem for the fast integration is not supported. Rootfinding problems should be
created and initialized with the slow integrator. See the steps below and MRIStepRootInit () for more
details.

The ARKStep module used for the fast time scale must be configured with an identity mass matrix.
Create an MRIStep object for the slow (outer) integration

Call arkode_mem = MRIStepCreate(...) to create the MRIStep memory block.
MRIStepCreate () returns a void* pointer to this memory structure. See the section MRIStep ini-
tialization and deallocation functions for details.

Set the slow step size
Call MRIStepSetFixedStep () to specify the slow time step size.

Set optional inputs

164

Chapter 6. Using MRIStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Call MRIStepSet x functions to change any optional inputs that control the behavior of MRIStep from their
default values. See the section Optional input functions for details.

9. Specify rootfinding problem

Optionally, call MRIStepRoot Init () to initialize a rootfinding problem to be solved during the integration
of the ODE system. See the section Rootfinding initialization function for general details, and the section
Optional input functions for relevant optional input calls.

10. Advance solution in time

For each point at which output is desired, call

ier = MRIStepEvolve (arkode_mem, tout, yout, &tret, itask);

Here, itask specifies the return mode. The vector yout (which can be the same as the vector y0 above) will
contain y(teu). See the section MRIStep solver function for details.

11. Get optional outputs

CallMRIStepGet « and/or ARKStepGet * functions to obtain optional output from the slow or fast integrators
respectively. See the section Optional output functions and Optional output functions for details.

12. Deallocate memory for solution vector

Upon completion of the integration, deallocate memory for the vector y (or yout) by calling the NVECTOR
destructor function:

N_VDestroy (y) ;

13. Free solver memory

Call ARKStepFree (&§inner_arkode_mem) and MRIStepFree (&arkode_mem) to free
the memory allocated for fast and slow integration modules respectively.

14. Free linear solver and matrix memory

Call SUNLinSolFree () and (possibly) SUNMatDestroy () to free any memory allocated for
any linear solver and/or matrix objects created above for the fast integrator.

15. Finalize MPI, if used

CallMPI_Finalize to terminate MPI.

6.5 MRIStep User-callable functions

This section describes the functions that are called by the user to setup and then solve an IVP using the MRIStep
time-stepping module. Some of these are required; however, starting with the section Optional input functions, the
functions listed involve optional inputs/outputs or restarting, and those paragraphs may be skipped for a casual use of
ARKode’s MRIStep module. In any case, refer to the preceding section, A skeleton of the user’s main program, for
the correct order of these calls.

On an error, each user-callable function returns a negative value (or NULL if the function returns a pointer) and sends
an error message to the error handler routine, which prints the message to st derr by default. However, the user can
set a file as error output or can provide her own error handler function (see the section Optional input functions for
details).

6.5. MRIStep User-callable functions 165

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

6.5.1 MRIStep initialization and deallocation functions

void* MRIStepCreate (ARKRhsFn fs, realtype 10, N_Vector y0, MRISTEP_ID inner_step_id, void* in-

ner_step_mem)
This function allocates and initializes memory for a problem to be solved using the MRIStep time-stepping

module in ARKode.
Arguments:

* fs — the name of the C function (of type ARKRhsFn ()) defining the slow portion of the right-hand
side function in § = f5(t,y) + fr(t,v).

¢ 10 — the initial value of t.
* y0 — the initial condition vector y(¢).

* inner_step_id — the identifier for the inner stepper. Currently MRISTEP_ARKSTEP is the only sup-
ported option.

* inner_step_mem —a voidx pointer to the ARKStep memory block for integrating the fast time scale.

Return value: If successful, a pointer to initialized problem memory of type voidx, to be passed to all user-
facing MRIStep routines listed below. If unsuccessful, a NULL pointer will be returned, and an error message
will be printed to stderr.

void MRIStepFree (void** arkode_mem)
This function frees the problem memory arkode_mem created by MRIStepCreate ().

Arguments:
* arkode_mem — pointer to the MRIStep memory block.

Return value: None

6.5.2 Rootfinding initialization function

As described in the section Rootfinding, while solving the IVP, ARKode’s time-stepping modules have the capability
to find the roots of a set of user-defined functions. In the MRIStep module root finding is performed between slow
solution time steps only (i.e., it is not performed within the sub-stepping a fast time scales). To activate the root-finding
algorithm, call the following function. This is normally called only once, prior to the first call to MRIStepEvolve (),
but if the rootfinding problem is to be changed during the solution, MRIStepRootInit () can also be called prior
to a continuation call to MRI StepEvolve ().

int MRIStepRootInit (void* arkode_mem, int nrtfn, ARKRootFn g)
Initializes a rootfinding problem to be solved during the integration of the ODE system. It must be called after
MRIStepCreate (), and before MRIStepEvolve ().

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* nrifn — number of functions g;, an integer > 0.

e g —name of user-supplied function, of type ARKRootFn (), defining the functions g; whose roots
are sought.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory was NULL
* ARK_MEM_FAIL if there was a memory allocation failure

166 Chapter 6. Using MRIStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

e ARK_ILL_INPUT if nrtfn is greater than zero but g = NULL.

Notes: To disable the rootfinding feature after it has already been initialized, or to free memory associated with
MRIStep’s rootfinding module, call MRIStepRootInit with nrifn = 0.

Similarly, if a new IVP is to be solved with acall to MRTStepReInit (), where the new IVP has no rootfinding
problem but the prior one did, then call MRIStepRootInit with nrtfn = 0.

Rootfinding is only supported for the slow (outer) integrator and should not be actived for the fast (inner)
integrator.

6.5.3 MRIStep solver function

This is the central step in the solution process — the call to perform the integration of the IVP. The input argument itask
specifies one of two modes as to where MRIStep is to return a solution. These modes are modified if the user has set
a stop time (with a call to the optional input function MRTIStepSet StopTime ()) or has requested rootfinding.

int MRIStepEvolve (void* arkode_mem, realtype tout, N_Vector yout, realtype *tret, int itask)
Integrates the ODE over an interval in ¢.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* tout — the next time at which a computed solution is desired.
* yout — the computed solution vector.
* tret — the time corresponding to yout (output).
* itask — a flag indicating the job of the solver for the next user step.

The ARK_NORMAL option causes the solver to take internal steps until it has just overtaken a user-
specified output time, tout, in the direction of integration, i.e. ¢,_1 < tout < t,, for forward inte-
gration, or ¢, < tout < t,_; for backward integration. It will then compute an approximation to
the solution y(tout) by interpolation (using one of the dense output routines described in the section
Interpolation).

The ARK_ONE_STEP option tells the solver to only take a single internal step y,_; — ¥, and then
return control back to the calling program. If this step will overtake fout then the solver will again
return an interpolated result; otherwise it will return a copy of the internal solution y,, in the vector
yout

Return value:
e ARK SUCCESS if successful.

e ARK_ROOT_RETURN if MRIStepEvolve () succeeded, and found one or more roots. If the num-
ber of root functions, nrifn, is greater than 1, call MRIStepGetRoot Info () to see which g; were
found to have a root at (*tret).

ARK_TSTOP_RETURN if MRIStepEvolve () succeeded and returned at tstop.
e ARK_MEM_NULL if the arkode_mem argument was NULL.
e ARK NO_MALLOC if arkode_mem was not allocated.

ARK_ILL_INPUT if one of the inputs to MRTIStepEvolve () is illegal, or some other input to the
solver was either illegal or missing. Details will be provided in the error message. Typical causes of
this failure:

1. A component of the error weight vector became zero during internal time-stepping.

2. A root of one of the root functions was found both at a point ¢ and also very near ¢.

6.5. MRIStep User-callable functions 167

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

* ARK_TOO_MUCH_WORK if the solver took mxstep internal steps but could not reach tout. The
default value for mxstep is MXSTEP_DEFAULT = 500.

* ARK_VECTOROP_ERR a vector operation error occured.

* ARK_INNERSTEP_FAILED if the inner stepper returned with an unrecoverable error. The value
returned from the inner stepper can be obtained with MRIStepGetLast InnerStepFlag ().

Notes: The input vector yout can use the same memory as the vector y0 of initial conditions that was passed to
MRIStepCreate ().

In ARK_ONE_STEP mode, tout is used only on the first call, and only to get the direction and a rough scale of
the independent variable.

All failure return values are negative and so testing the return argument for negative values will trap all
MRIStepEvolve () failures.

Since interpolation may reduce the accuracy in the reported solution, if full method accuracy is desired the user
should issue a call to MRIStepSetStopTime () before the call to MRIStepEvolve () to specify a fixed
stop time to end the time step and return to the user. Upon return from MRIStepEvolve (), a copy of the
internal solution y,, will be returned in the vector yout. Once the integrator returns at a tstop time, any future
testing for tstop is disabled (and can be re-enabled only though a new call to MRIStepSetStopTime ()).

On any error return in which one or more internal steps were taken by MRIStepEvolve (), the returned values
of tret and yout correspond to the farthest point reached in the integration. On all other error returns, fret and
yout are left unchanged from those provided to the routine.

6.5.4 Optional input functions

There are numerous optional input parameters that control the behavior of the MRIStep solver, each of which may be
modified from its default value through calling an appropriate input function. The following tables list all optional
input functions, grouped by which aspect of MRIStep they control. Detailed information on the calling syntax and
arguments for each function are then provided following each table.

The optional inputs are grouped into the following categories:
* General MRIStep options (Optional inputs for MRIStep),
* IVP method solver options (Optional inputs for IVP method selection),

For the most casual use of MRIStep, relying on the default set of solver parameters, the reader can skip to the following
section, User-supplied functions.

‘We note that, on an error return, all of the optional input functions send an error message to the error handler function.
We also note that all error return values are negative, so a test on the return arguments for negative values will catch
all errors.

168 Chapter 6. Using MRIStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Optional inputs for MRIStep

Optional input Function name Default
Return MRIStep solver parameters to their defaults MRIStepSetDefaults () internal
Set dense output order MRIStepSetDenseOrder () 3

Supply a pointer to a diagnostics output file MRIStepSetDiagnostics () NULL
Supply a pointer to an error output file MRIStepSetErrFile () stderr
Supply a custom error handler function MRIStepSetErrHandlerFn () | internal fn
Run with fixed-step sizes MRIStepSetFixedStep () required
Maximum no. of warnings for t,, + h = t,, MRIStepSetMaxHnilWarns () | 10
Maximum no. of internal steps before fout MRIStepSetMaxNumSteps () 500
Set a value for ¢, MRIStepSetStopTime () 00
Supply a pointer for user data MRIStepSetUserData () NULL
Supply a function to be called prior to the inner integration | MRIStepSetPreInnerFn () NULL
Supply a function to be called after the inner integration MRIStepSetPostInnerFn () NULL

int MRIStepSetDefaults (void* arkode_mem)
Resets all optional input parameters to MRIStep’s original default values.
Arguments:
* arkode_mem — pointer to the MRIStep memory block.
Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes: This function does not change problem-defining function pointers fs and ff or the user_data pointer.
It also does not affect any data structures or options related to root-finding (those can be reset using
MRIStepRootInit ()).

int MRIStepSetDenseOrder (void* arkode_mem, int dord)
Specifies the degree of the polynomial interpolant used for dense output (i.e. interpolation of solution output
values).

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* dord — requested polynomial order of accuracy.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes: Allowed values are between 0 and min (g, 5), where q is the order of the overall integration method.

int MRIStepSetDiagnostics (void* arkode_mem, FILE* diagfp)
Specifies the file pointer for a diagnostics file where all MRIStep step adaptivity and solver information is
written.

Arguments:

* arkode_mem — pointer to the MRIStep memory block.

6.5. MRIStep User-callable functions 169

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

* diagfp — pointer to the diagnostics output file.
Return value:

* ARK_SUCCESS if successful

* ARK_MEM_NULL if the MRIStep memory is NULL

e ARK_ILL_INPUT if an argument has an illegal value

Notes: This parameter can be stdout or stderr, although the suggested approach is to specify a pointer to
a unique file opened by the user and returned by fopen. If not called, or if called with a NULL file pointer, all
diagnostics output is disabled.

When run in parallel, only one process should set a non-NULL value for this pointer, since statistics from all
processes would be identical.

int MRIStepSetErrFile (void* arkode_mem, FILE* errfp)
Specifies a pointer to the file where all MRIStep warning and error messages will be written if the default internal
error handling function is used.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* errfp — pointer to the output file.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value
Notes: The default value for errfp is stderr.

Passing a NULL value disables all future error message output (except for the case wherein the MRIStep memory
pointer is NULL). This use of the function is strongly discouraged.

If used, this routine should be called before any other optional input functions, in order to take effect for subse-
quent error messages.

int MRIStepSetErrHandlerFn (void* arkode_mem, ARKErrHandlerFn ehfun, void* eh_data)
Specifies the optional user-defined function to be used in handling error messages.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* ehfun — name of user-supplied error handler function.
* eh_data — pointer to user data passed to ehfun every time it is called.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value
Notes: Error messages indicating that the MRIStep solver memory is NULL will always be directed to stderr.

int MRIStepSetFixedStep (void* arkode_mem, realtype hs)
Set the slow and fast step size used within MRIStep.

Arguments:

170 Chapter 6. Using MRIStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

* arkode_mem — pointer to the MRIStep memory block.
* hs — value of the outer (slow) step size.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes:

If the inner (fast) stepper is using fixed step size Af that does not evenly divide the time interval between the
stages of the outer (slow) method, then the actual value used for the inner steps will be adjusted to a lightly

smaller value to ensure (¢; — ¢f_;)hs/hy is an integer value. Specifically, the fast step for the i-th outer stage
ci—ci_1)hs

. — _lei—ci)he
will be h = [(c;—ci_)hs/hs]"

If both MRIStepSetFixedStep () and MRIStepSetStopTime () are used, then the fixed step size will
be used for all steps until the final step preceding the provided stop time (which may be shorter). To resume
use of the previous fixed step size, another call to MRIStepSetFixedStep () must be made prior to calling
MRIStepEvolve () to resume integration.

int MRIStepSetMaxHnilWarns (void* arkode_mem, int mxhnil)
Specifies the maximum number of messages issued by the solver to warn that ¢ + A = t on the next internal
step, before MRIStep will instead return with an error.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* mxhnil — maximum allowed number of warning messages (> 0).
Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes: The default value is 10; set mxhnil to zero to specify this default.
A negative value indicates that no warning messages should be issued.

int MRIStepSetMaxNumSteps (void* arkode_mem, long int mxsteps)
Specifies the maximum number of steps to be taken by the solver in its attempt to reach the next output time,
before MRIStep will return with an error.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* mxsteps — maximum allowed number of internal steps.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes: Passing mxsteps = 0 results in MRIStep using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

6.5. MRIStep User-callable functions 171

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

int MRIStepSetStopTime (void* arkode_mem, realtype tstop)
Specifies the value of the independent variable ¢ past which the solution is not to proceed.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* tstop — stopping time for the integrator.
Return value:
* ARK_SUCCESS if successful
e ARK_MEM_NULL if the MRIStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes: The default is that no stop time is imposed.

int MRIStepSetUserData (void* arkode_mem, void* user_data)
Specifies the user data block user_data for the outer integrator and attaches it to the main MRIStep memory
block.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* user_data — pointer to the user data.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value

Notes: If specified, the pointer to user_data is passed to all user-supplied functions called by the outer integrator
for which it is an argument; otherwise NULL is passed.

To attach a user data block to the inner integrator call the appropriate SetUserData function for the inner inte-
grator memory structure (e.g., ARKStepSetUserData () if the inner stepper is ARKStep). This pointer may
be the same as or different from the pointer attached to the outer integrator depending on what is required by the
user code.

int MRIStepSetPreInnerFn (void* arkode_mem, ARKInnerToOuterFn prefnn)
Specifies the function called before each inner integration.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.

e prefn — the name of the C function (of type ARKOuterToInner ()) defining pre inner integration
function.

Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory is NULL

int MRIStepSetPostInnerFn (void* arkode_mem, ARKOuterTolnnerFn postfin)
Specifies the function called after each inner integration.

Arguments:

* arkode_mem — pointer to the MRIStep memory block.

172 Chapter 6. Using MRIStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

¢ postfn — the name of the C function (of type ARKInnerToOuter ()) defining post inner integration
function.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory is NULL

Optional inputs for IVP method selection

Optional input Function name Default
Set MRI outer RK table MRIStepSetTable () internal
Specify MRI outer RK table number | MRIStepSetTableNum () | internal

int MRIStepSetTable (void* arkode_mem, int q, ARKodeButcherTable B)
Specifies a customized Butcher table for the MRI outer (slow) method.

Arguments:

* arkode_mem — pointer to the MRIStep memory block.

* g — global order of accuracy for the MRI method.

¢ B —the Butcher table for the outer (slow) RK method.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the MRIStep memory is NULL

* ARK_ILL_INPUT if an argument has an illegal value
Notes:

For a description of the ARKodeButcherTable type and related functions for creating Butcher tables see
Butcher Table Data Structure.

At this time the outer (slow) Butcher table must define an explicit Runge-Kutta method. Additionally, the outer

table must have stage times that are unique and ordered (i.e., ¢{ > ¢;_;) and the final stage time must be less

than 1. Error checking is performed to ensure that B defines an ERK method (i.e., the A component of B is
strictly lower-triangular) and the stage times of B satisfy the aforementioned restrictions.

The input value of ¢ is used rather than the order encoded in the Butcher table as the overall order of the MRI
method may differ from the order of the outer table. No error checking is performed to ensure that p correctly
describes the coefficients that were input.

int MRIStepSetMRITableNum (void* arkode_mem, int itable)
Indicates to use specific built-in Butcher table for the MRI outer (slow) method.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
e itable — index of the outer (slow) Butcher table.
Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value

6.5. MRIStep User-callable functions 173

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Notes: itable should match existing explicit methods from the section Explicit Butcher tables. Error-checking
is performed to ensure that this tables exists, is not implicit, and satisfies the restrictions listed above for
MRIStepSetTable ().

Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm, the mathematics of
which are described in the section Rootfinding.

Optional input Function name Default
Direction of zero-crossings to monitor | MRIStepSetRootDirection () both
Disable inactive root warnings MRIStepSetNoInactiveRootWarn () | enabled

int MRIStepSetRootDirection (void* arkode_mem, int* rootdir)
Specifies the direction of zero-crossings to be located and returned.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.

* rootdir — state array of length nrtfn, the number of root functions g; (the value of nrtfn was supplied
in the call to MRIStepRootInit ()). f rootdir[i] == O then crossing in either direction for
g; should be reported. A value of +1 or -1 indicates that the solver should report only zero-crossings
where g; is increasing or decreasing, respectively.

Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory is NULL
e ARK_ILL_INPUT if an argument has an illegal value
Notes: The default behavior is to monitor for both zero-crossing directions.

int MRIStepSetNoInactiveRootWarn (void* arkode_mem)
Disables issuing a warning if some root function appears to be identically zero at the beginning of the integration.

Arguments:

* arkode_mem — pointer to the MRIStep memory block.
Return value:

e ARK _SUCCESS if successful

* ARK_MEM_NULL if the MRIStep memory is NULL

Notes: MRIStep will not report the initial conditions as a possible zero-crossing (assuming that one or more
components g; are zero at the initial time). However, if it appears that some g; is identically zero at the initial
time (i.e., g; is zero at the initial time and after the first step), MRIStep will issue a warning which can be
disabled with this optional input function.

6.5.5 Interpolated output function

An optional function MRIStepGetDky () is available to obtain additional values of solution-related quantities. This
function should only be called after a successful return from MRIStepEvolve (), as it provides interpolated values
either of y or of its derivatives (up to the 3rd derivative) interpolated to any value of ¢ in the last internal step taken
by MRIStepEvolve (). Internally, this dense output algorithm is identical to the algorithm used for the maximum
order implicit predictors, described in the section Maximum order predictor, except that derivatives of the polynomial
model may be evaluated upon request.

174 Chapter 6. Using MRIStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

int MRIStepGetDky (void* arkode_mem, realtype t, int k, N_Vector dky)

Computes the k-th derivative of the function y at the time #, i.e. %y(t), for values of the independent variable
satisfying ¢,, — h,, < t < t,,, with ¢,, as current internal time reached, and h,, is the last internal step size suc-
cessfully used by the solver. This routine uses an interpolating polynomial of degree max(dord, k), where dord is
the argument provided to MRIStepSetDenseOrder (). The user may request k in the range {0,...,*dord*}.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* ¢ —the value of the independent variable at which the derivative is to be evaluated.
* k — the derivative order requested.
* dky — output vector (must be allocated by the user).
Return value:
e ARK SUCCESS if successful
* ARK_BAD_K fif k is not in the range {0,...,*dord*}.
* ARK_BAD_T if t is not in the interval [t,, — Ay, t5]
* ARK_BAD_DKY if the dky vector was NULL
* ARK_MEM_NULL if the MRIStep memory is NULL
Notes: It is only legal to call this function after a successful return from MRIStepEvolve ().

A user may access the values ¢, and h, via the functions MRIStepGetCurrentTime () and
MRIStepGetLastStep (), respectively.

6.5.6 Optional output functions
MRIStep provides an extensive set of functions that can be used to obtain solver performance information. We organize
these into groups:

1. SUNDIALS version information accessor routines are in the subsection SUNDIALS version information,

2. General MRIStep output routines are in the subsection Main solver optional output functions,

3. Output routines regarding root-finding results are in the subsection Rootfinding optional output functions,

4

. General usability routines (e.g. to print the current MRIStep parameters, or output the current Butcher tables)
are in the subsection General usability functions.

Following each table, we elaborate on each function.

Some of the optional outputs, especially the various counters, can be very useful in determining the efficiency of
various methods inside MRIStep. For example:

» The counters nssteps, nfsteps, nfs_evals, and nff_evals provide a rough measure of the overall cost of a given
run, and can be compared between runs with different solver options to suggest which set of options is the most
efficient.

It is therefore recommended that users retrieve and output these statistics following each run, and take some time to
investigate alternate solver options that will be more optimal for their particular problem of interest.

SUNDIALS version information

The following functions provide a way to get SUNDIALS version information at runtime.

6.5. MRIStep User-callable functions 175

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

int SUNDIALSGetVersion (char *version, int len)
This routine fills a string with SUNDIALS version information.

Arguments:

* version — character array to hold the SUNDIALS version information.

¢ len — allocated length of the version character array.

Return value:

¢ (if successful

* -1 if the input string is too short to store the SUNDIALS version

Notes: An array of 25 characters should be sufficient to hold the version information.

int SUNDIALSGetVersionNumber (int *major, int *minor, int *patch, char *label, int len)

This routine sets integers for the SUNDIALS major, minor, and patch release numbers and fills a string with the

release label if applicable.

Arguments:

* major — SUNDIALS release major version number.

e minor — SUNDIALS release minor version number.

¢ patch — SUNDIALS release patch version number.

* label — string to hold the SUNDIALS release label.

¢ Jen — allocated length of the label character array.

Return value:

¢ (if successful

* -1 if the input string is too short to store the SUNDIALS label

Notes: An array of 10 characters should be sufficient to hold the label information. If a label is not used in the

release version, no information is copied to label.

Main solver optional output functions

Optional output

Function name

Size of MRIStep real and integer workspaces

MRIStepGetWorkSpace ()

Cumulative numbers of internal steps

MRIStepGetNumSteps ()

Step size used for the last successful step

MRIStepGetLastStep ()

Name of constant associated with a return flag

MRIStepGetReturnFlagName ()

No. of calls to the fs and ff functions

MRIStepGetNumRhsEvals ()

Current MRI Butcher tables

MRIStepGetCurrentButcherTables ()

Last inner stepper return value

MRIStepGetLastInnerStepFlag/()

int MRIStepGetWorkSpace (void* arkode_mem, long int* lenrw, long int* leniw)
Returns the MRIStep real and integer workspace sizes.

Arguments:

* arkode_mem — pointer to the MRIStep memory block.

* Jenrw — the number of realtype values in the MRIStep workspace.

* leniw — the number of integer values in the MRIStep workspace.

Return value:

176

Chapter 6. Using MRIStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

e ARK SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory was NULL

int MRIStepGetNumSteps (void* arkode_mem, long int* nssteps, long int* nfsteps)
Returns the cumulative number of slow and fast internal steps taken by the solver (so far).

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* nssteps — number of slow steps taken in the solver.
* nfsteps — number of fast steps taken in the solver.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory was NULL

int MRIStepGetLastStep (void* arkode_mem, realtype* hlast)
Returns the integration step size taken on the last successful internal step.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* hlast — step size taken on the last internal step.
Return value:
* ARK_SUCCESS if successful
e ARK_MEM_NULL if the MRIStep memory was NULL

int MRIStepGetCurrentTime (void* arkode_mem, realtype* tcur)
Returns the current internal time reached by the solver.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
e tcur — current internal time reached.
Return value:
e ARK SUCCESS if successful
e ARK_MEM_NULL if the MRIStep memory was NULL

char *MRIStepGetReturnFlagName (long int flag)
Returns the name of the MRIStep constant corresponding to flag.

Arguments:

* flag — a return flag from an MRIStep function.

Return value: The return value is a string containing the name of the corresponding constant.

int MRIStepGetNumRhsEvals (void* arkode_mem, long int* nfs_evals)
Returns the number of calls to the user’s outer (slow) right-hand side function, fs (so far).

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* nfs_evals — number of calls to the user’s fs(¢,y) function.

Return value:

6.5. MRIStep User-callable functions

177

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

e ARK SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory was NULL

int MRIStepGetCurrentButcherTables (void* arkode_mem, ARKodeButcherTable *Bs, ARKode-

ButcherTable *Bf)
Returns the slow and fast Butcher tables currently in use by the solver.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* Bs — pointer to slow Butcher table structure.
* Bf — pointer to fast Butcher table structure.
Return value:
* ARK_SUCCESS if successful
e ARK_MEM_NULL if the MRIStep memory was NULL

Notes: The ARKodeButcherTable data structure is defined in the header file arkode/arkode_butcher.h.
It is defined as a pointer to the following C structure:

typedef struct ARKodeButcherTableMem ({

int g; /+* method order of accuracy */
int p; /* embedding order of accuracy */
int stages; /* number of stages */
realtype *+*A; /+ Butcher table coefficients */
realtype =c; /#* canopy node coefficients */
realtype xb; /+* root node coefficients */
realtype =*d; /+ embedding coefficients */

} *ARKodeButcherTable;

int MRIStepGetLastInnerStepFlag (void* arkode_mem, int* flag)
Returns the last return value from the inner stepper.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* flag — inner stepper return value.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory was NULL

General usability functions

The following optional routines may be called by a user to inquire about existing solver parameters, to retrieve stored
Butcher tables, write the current Butcher table, or even to test a provided Butcher table to determine its analytical order
of accuracy. While none of these would typically be called during the course of solving an initial value problem, these
may be useful for users wishing to better understand MRIStep and/or specific Runge-Kutta methods.

Optional routine Function name
Output all MRIStep solver parameters | MRIStepiWriteParameters ()
Output the current Butcher tables MRIStepWriteButcher ()

178 Chapter 6. Using MRIStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

int MRIStepWriteParameters (void* arkode_mem, FILE *fp)
Outputs all MRIStep solver parameters to the provided file pointer.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* fp — pointer to use for printing the solver parameters.
Return value:
* ARKS_SUCCESS if successful
* ARKS_MEM_NULL if the MRIStep memory was NULL
Notes: The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since parameters for all
processes would be identical.

int MRIStepWriteButcher (void* arkode_mem, FILE *fp)
Outputs the current Butcher tables to the provided file pointer.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* fp — pointer to use for printing the Butcher tables.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory was NULL
Notes: The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since tables for all pro-
cesses would be identical.

Rootfinding optional output functions

Optional output Function name
Array showing roots found MRIStepGetRootInfo ()
No. of calls to user root function | MRIStepGet NumGEvals ()

int MRIStepGetRootInfo (void* arkode_mem, int* rootsfound)
Returns an array showing which functions were found to have a root.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.

* rootsfound — array of length nrtfn with the indices of the user functions g; found to have a root
(the value of nrtfn was supplied in the call to MRIStepRootInit ()). For i = 0... nrtfn-1,
rootsfound[1i] is nonzero if g; has a root, and O if not.

Return value:
e ARK_SUCCESS if successful
e ARK_MEM_NULL if the MRIStep memory was NULL

6.5. MRIStep User-callable functions 179

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Notes: The user must allocate space for rootsfound prior to calling this function.

For the components of g; for which a root was found, the sign of rootsfound[i] indicates the direction of
zero-crossing. A value of +1 indicates that g; is increasing, while a value of -1 indicates a decreasing g;.

int MRIStepGetNumGEvals (void* arkode_mem, long int* ngevals)
Returns the cumulative number of calls made to the user’s root function g.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* ngevals — number of calls made to g so far.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory was NULL

6.5.7 MRIStep re-initialization functions

To reinitialize the MRIStep module for the solution of a new problem, where a prior call to MRIStepCreate ()
has been made, the user must call the function MRIStepReTInit (). The new problem must have the same size
as the previous one. This routine retains the current settings for all ARKstep module options and performs the same
input checking and initializations that are done in MRIStepCreate (), but it performs no memory allocation as is
assumes that the existing internal memory is sufficient for the new problem. A call to this re-initialization routine
deletes the solution history that was stored internally during the previous integration. Following a successful call to
MRIStepReInit (),call MRIStepEvolve () again for the solution of the new problem.

The use of MRIStepReInit () requires that the number of Runge Kutta stages for both the slow and fast methods
be no larger for the new problem than for the previous problem.

One important use of the MRTStepReInit () function is in the treating of jump discontinuities in the RHS functions.
Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and restart the
integrator with a readjusted ODE model, using a call to this routine. To stop when the location of the discontinuity
is known, simply make that location a value of tout. To stop when the location of the discontinuity is determined
by the solution, use the rootfinding feature. In either case, it is critical that the RHS functions not incorporate the
discontinuity, but rather have a smooth extension over the discontinuity, so that the step across it (and subsequent
rootfinding, if used) can be done efficiently. Then use a switch within the RHS functions (communicated through
user_data) that can be flipped between the stopping of the integration and the restart, so that the restarted problem
uses the new values (which have jumped). Similar comments apply if there is to be a jump in the dependent variable
vector.

int MRIStepReInit (void* arkode_mem, ARKRhsFn fs, realtype 10, N_Vector y0)
Provides required problem specifications and re-initializes the MRIStep outer (slow) stepper.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.

¢ fs — the name of the C function (of type ARKRhsFn ()) defining the slow right-hand side function in
y=[fs(ty) + f1(t,y).

* ff — the name of the C function (of type ARKRhsFn ()) defining the fast right-hand side function in
g=[fs(t.y) + fr(t,y).

* 10 — the initial value of ¢.

* y0 — the initial condition vector y(to).

Return value:

180 Chapter 6. Using MRIStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

ARK_SUCCESS if successful
ARK_MEM_NULL if the MRIStep memory was NULL
* ARK_MEM_FAIL if a memory allocation failed

* ARK_ILL_INPUT if an argument has an illegal value.

Notes: If the inner (fast) stepper also needs to be reinitialized, its reinitialization function should be called
before calling MRIStepReInit () to reinitialize the outer stepper.

All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, MRIStepReInit () also sends an error message to the error handler function.

6.5.8 MRIStep system resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatially-adaptive PDE simulations under a method-of-lines approach), the MRIStep integrator may be “resized” be-
tween slow integration steps, through calls to the MRTIStepResize () function. This function modifies MRIStep’s
internal memory structures to use the new problem size.

To aid in the vector resize operation, the user can supply a vector resize function that will take as input a vector with
the previous size, and transform it in-place to return a corresponding vector of the new size. If this function (of type
ARKVecResizeFn ()) is not supplied (i.e. is set to NULL), then all existing vectors internal to MRIStep will be
destroyed and re-cloned from the new input vector.

int MRIStepResize (void* arkode_mem, N_Vector ynew, realtype 10, ARKVecResizeFn resize, void* re-

o size_data)
Re-initializes MRIStep with a different state vector.

Arguments:
* arkode_mem — pointer to the MRIStep memory block.
* ynew — the newly-sized solution vector, holding the current dependent variable values /(o).
* 10 — the current value of the independent variable £, (this must be consistent with ynew).
* resize — the user-supplied vector resize function (of type ARKVecResizeFn ().

* resize_data — the user-supplied data structure to be passed to resize when modifying internal MRIStep
vectors.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the MRIStep memory was NULL
e ARK_NO_MALLOC if arkode_mem was not allocated.
* ARK_ILL_INPUT if an argument has an illegal value.

Notes: If an error occurred, MRIStepResize () also sends an error message to the error handler function.

6.6 User-supplied functions

The user-supplied functions for MRIStep consist of:
* functions that defines the ODE (required),

* afunction that handles error and warning messages (optional),

6.6. User-supplied functions 181

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

* a function that defines the root-finding problem(s) to solve (optional),

* afunction that handles vector resizing operations, if the underlying vector structure supports resizing (as opposed
to deletion/recreation), and if the user plans to call MRTStepResize () (optional).

6.6.1 ODE right-hand side

The user must supply two functions of type ARKRhsFn to specify the right-hand side of the ODE system:

typedef int (*ARKRhsFn) (realtype ¢, N_Vector y, N_Vector ydot, void* user_data)
This function computes a portion of the ODE right-hand side for a given value of the independent variable ¢ and
state vector y.

Arguments:
* t—the current value of the independent variable.
* y — the current value of the dependent variable vector.
* ydot — the output vector that forms a portion the ODE RHS f (¢, y).
* user_data — the user_data pointer that was passed to MRIStepSetUserData ().

Return value: An ARKRhsFn should return 0O if successful, a positive value if a recoverable error occurred, or a
negative value if it failed unrecoverably. As the MRIStep module only supports fixed step sizes at this time any
non-zero return value will halt the integration.

Notes: Allocation of memory for ydot is handled within the MRIStep module. A recoverable failure error return
from the ARKRhsFn is typically used to flag a value of the dependent variable y that is “illegal” in some way
(e.g., negative where only a non-negative value is physically meaningful).

6.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed to by errfp (see
MRIStepSetErrFile ()), the user may provide a function of type ARKErrHandlerFn to process any such
messages.

typedef void (*ARKErrHandlerFn) (int error_code, const char* module, const char* function, char* msg,

void* user_data)
This function processes error and warning messages from MRIStep and its sub-modules.

Arguments:
e error_code — the error code.
* module — the name of the MRIStep module reporting the error.
* function — the name of the function in which the error occurred.
* msg — the error message.

* user_data — a pointer to user data, the same as the eh_data parameter that was passed to
MRIStepSetErrHandlerFn ().

Return value: An ARKErrHandlerFn function has no return value.

Notes: error_code is negative for errors and positive (ARK_WARNING) for warnings. If a function that returns
a pointer to memory encounters an error, it sets error_code to 0.

182 Chapter 6. Using MRIStep for C and C++ Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

6.6.3 Rootfinding function
If a rootfinding problem is to be solved during the integration of the ODE system, the user must supply a function of
type ARKRootFn.

typedef int (*ARKRootFn) (realtype t, N_Vector y, realtype* gout, void* user_data)
This function implements a vector-valued function g(¢, y) such that the roots of the nrifn components g;(t,y)
are sought.

Arguments:
* t—the current value of the independent variable.
* y — the current value of the dependent variable vector.
* gout — the output array, of length nrifn, with components g, (¢, y).

* user_data — a pointer to user data, the same as the user_data parameter that was passed to
MRIStepSetUserData ().

Return value: An ARKRootFn function should return O if successful or a non-zero value if an error occurred
(in which case the integration is halted and MRIStep returns ARK_RTFUNC_FAIL).

Notes: Allocation of memory for gout is handled within MRIStep.

6.6.4 Vector resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatial adaptivity in a PDE simulation), the MRIStep integrator may be “resized” between integration steps, through
calls to the MRTStepResize () function. Typically, when performing adaptive simulations the solution is stored in
a customized user-supplied data structure, to enable adaptivity without repeated allocation/deallocation of memory. In
these scenarios, it is recommended that the user supply a customized vector kernel to interface between SUNDIALS
and their problem-specific data structure. If this vector kernel includes a function of type ARKVecResizeFn to
resize a given vector implementation, then this function may be supplied to MRTIStepResize () so that all internal
MRIStep vectors may be resized, instead of deleting and re-creating them at each call. This resize function should
have the following form:

typedef int (*xARKVecResizeFn) (N_Vector y, N_Vector ytemplate, void* user_data)
This function resizes the vector y to match the dimensions of the supplied vector, ytemplate.

Arguments:
 y —the vector to resize.
* ytemplate — a vector of the desired size.

* user_data — a pointer to user data, the same as the resize_data parameter that was passed to
MRIStepResize ().

Return value: An ARKVecResizeFn function should return 0 if it successfully resizes the vector y, and a non-
zero value otherwise.

Notes: If this function is not supplied, then MRIStep will instead destroy the vector y and clone a new vector y
off of ytemplate.

6.6.5 Pre inner integrator communication function

The user may supply a function of type MRIStepPreInnerFn that will be called before each inner integration to
perform any communication or memory transfers of forcing data supplied by the the outer integrator to inner integrator
for the inner integration.

6.6. User-supplied functions 183

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

typedef int (*MRIStepPreInnerFn) (realtype t, N_Vector* f, int num_vecs, void* user_data)
Arguments:
* ¢ —the current value of the independent variable.
* f —an N_Vector array of outer forcing vectors.
* num_vecs — the number of vectors in the N_Vector array.
* user_data — the user_data pointer that was passed to MRIStepSetUserData ().

Return value: An MRIStepPrelnnerFn function should return 0 if successful, a positive value if a recoverable
error occurred, or a negative value if an unrecoverable error occurred. As the MRIStep module only supports
fixed step sizes at this time any non-zero return value will halt the integration.

Notes: In a heterogeneous computing environment if any data copies between the host and device vector data
are necessary, this is where that should occur.

6.6.6 Post inner integrator communication function

The user may supply a function of type MRIStepPost InnerFn that will be called affer each inner integration to
perform any communication or memory transfers of state data supplied by the inner integrator to the outer integrator
for the outer integration.

typedef int (*MRIStepPostInnerFn) (realtype ¢, N_Vector y, void* user_data)
Arguments:
* t—the current value of the independent variable.
* y — the current value of the dependent variable vector.
* user_data — the user_data pointer that was passed to MRIStepSetUserData ().

Return value: An MRIStepPostInnerFn function should return O if successful, a positive value if a recoverable
error occurred, or a negative value if an unrecoverable error occurred. As the MRIStep module only supports
fixed step sizes at this time any non-zero return value will halt the integration.

Notes: In a heterogeneous computing environment if any data copies between the host and device vector data
are necessary, this is where that should occur.

184 Chapter 6. Using MRIStep for C and C++ Applications

CHAPTER
SEVEN

USING ARKODE FOR FORTRAN APPLICATIONS

Fortran 2003 interfaces to each of the time-stepping modules as well as a Fortran 77 style interface to the ARKStep
time-stepping module are provided to support the use of ARKode, for the solution of ODE systems, in a mixed
Fortran/C setting. While ARKode is written in C, it is assumed here that the user’s calling program and user-supplied
problem-definining rotuines are written in Fortran.

7.1 ARKode Fortran 2003 Interface Modules

The ARKode Fortran 2003 modules define interfaces to most of the ARKode C API using the intrinsic
iso_c_binding module which provides a standardized mechanism for interoperating with C. AKRode provides
four Fortran 2003 modules:

e farkode_arkstep_mod, farkode_erkstep_mod, farkode_mristep_mod provide interfaces to
the ARKStep, ERKStep, and MRIStep time-stepping modules respectively

* farkode_mod which interfaces to the components of ARKode which are shared by the time-stepping modules

All interfaced functions are named after the corresponding C function, but with a leading ‘F’. For example. the
ARKStep function ARKStepCreate is interfaced as FARKStepCreate. Thus, the steps to use an ARKode time-
stepping module from Fortran are identical (ignoring language differences) to using it from C/C++.

The Fortran 2003 ARKode interface modules can be accessed by the use statement, i.e. use farkode_mod,
and linking to the library 1ibsundials_farkode_mod.1lib in addition to 1ibsundials_farkode.lib.
Further information on the location of installed modules is provided in the Chapter ARKode Installation Procedure.

The Fortran 2003 interface modules were generated with SWIG Fortran, a fork of SWIG [/PE2019]. Users who are
interested in the SWIG code used in the generation process should contact the SUNDIALS development team.

7.1.1 SUNDIALS Fortran 2003 Interface Modules

All of the generic SUNDIALS modules provide Fortran 2003 interface modules. Many of the generic mod-
ule implementations provide Fortran 2003 interfaces (a complete list of modules with Fortran 2003 interfaces is
given in Table: SUNDIALS Fortran 2003 Interface Modules. A module can be accessed with the use statement,
e.g. use fnvector_openmp_mod, and linking to the Fortran 2003 library in addition to the C library, e.g.
libsundials_fnvecpenmp_mod.liband libsundials_nvecopenmp.lib.

The Fortran 2003 interfaces leverage the iso_c_binding module and the bind (C) attribute to closely follow
the SUNDIALS C API (ignoring language differences). The generic SUNDIALS structures, e.g. N_Vector, are
interfaced as Fortran derived types, and function signatures are matched but with an F prepending the name, e.g.
FN_VConst instead of N_VConst. Constants are named exactly as they are in the C API. Accordingly, using
SUNDIALS via the Fortran 2003 interfaces looks just like using it in C. Some caveats stemming from the language

185

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

differences are discussed in the section Notable Fortran/C usage differences. A discussion on the topic of equivalent
data types in C and Fortran 2003 is presented in section Data Types.

Further information on the Fortran 2003 interfaces specific to modules is given in the NVECTOR, SUNMatrix, SUN-
LinearSolver, and SUNNonlinearSolver sections alongside the C documentation (chapters Vector Data Structures,
Matrix Data Structures, Description of the SUNLinearSolver module, and Description of the SUNNonlinearSolver
Module respectively). For details on where the Fortran 2003 module (. mod) files and libraries are installed see Ap-
pendix ARKode Installation Procedure.

Table: SUNDIALS Fortran 2003 Interface Modules

Module Fortran 2003 Module Name
NVECTOR fsundials_nvector_mod
NVECTOR_SERIAL fnvector_serial_mod
NVECTOR_OPENMP fnvector_openmp_mod
NVECTOR_PTHREADS fnvector_pthreads_mod
NVECTOR_PARALLEL fnvector_parallel_mod
NVECTOR_PARHYP Not interfaced

NVECTOR_PETSC Not interfaced

NVECTOR_CUDA Not interfaced

NVECTOR_RAJA Not interfaced
NVECTOR_MANVECTOR fnvector_manyvector_mod
NVECTOR_MPIMANVECTOR fnvector_mpimanyvector_mod
NVECTOR_MPIPLUSX fnvector_mpiplusx_mod
SUNMATRIX fsundials_matrix_mod
SUNMATRIX_BAND fsunmatrix_band_mod
SUNMATRIX_DENSE fsunmatrix_dense_mod
SUNMATRIX_SPARSE fsunmatrix_sparse_mod
SUNLINSOL fsundials_linearsolver_mod
SUNLINSOL_BAND fsunlinsol_band_mod
SUNLINSOL_DENSE fsunlinsol_dense_mod

SUNLINSOL_LAPACKBAND Not interfaced
SUNLINSOL_LAPACKDENSE Not interfaced

SUNLINSOL_KLU fsunlinsol_klu_mod
SUNLINSOL_SLUMT Not interfaced

SUNLINSOL_SLUDIST Not interfaced

SUNLINSOL_SPGMR fsunlinsol_spgmr_mod
SUNLINSOL_SPFGMR fsunlinsol_spfgmr_mod
SUNLINSOL_SPBCGS fsunlinsol_spbcgs_mod
SUNLINSOL_SPTFQMR fsunlinsol_sptfgmr_mod
SUNLINSOL_PCG fsunlinsol_pcg_mof
SUNNONLINSOL fsundials_nonlinearsolver_mod
SUNNONLINSOL_NEWTON fsunnonlinsol_newton_mod

SUNNONLINSOL_FIXEDPOINT | fsunnonlinsol_fixedpoint_mod

7.1.2 Data Types

Generally, the Fortran 2003 type that is equivalent to the C type is what one would expect. Primitive types map to the
iso_c_binding type equivalent. SUNDIALS generic types map to a Fortran derived type. However, the handling
of pointer types is not always clear as they can depend on the parameter direction. ref:Fortran2003.DataTypesTable
presents a summary of the type equivalencies with the parameter direction in mind.

186 Chapter 7. Using ARKode for Fortran Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

NOTE: Currently, the Fortran 2003 interfaces are only compatible with SUNDIALS builds where the realtype is
double-precision the sunindextype size is 64-bits.

Table: C/Fortran-2003 Equivalent Types

C Type Parameter Direction | Fortran 2003 type

double in, inout, out, return real (c_double)

int in, inout, out, return integer (c_int)

long in, inout, out, return integer (c_long)

booleantype in, inout, out, return integer (c_int)

realtype in, inout, out, return real (c_double)

sunindextype in, inout, out, return integer (c_long)

doublex* in, inout, out real (c_double), dimension ()
doublex return real (c_double), pointer, dimension(:)
intx in, inout, out real (c_int), dimension ()

int* return real (c_int), pointer, dimension(:)
long= in, inout, out real (c_long), dimension (*)

longx return real (c_long), pointer, dimension(:)
realtypex* in, inout, out real (c_double), dimension ()
realtypex* return real (c_double), pointer, dimension(:)
sunindextypex* in, inout, out real (c_long), dimension (*)
sunindextypex return real (c_long), pointer, dimension(:)
realtypel] in, inout, out real (c_double), dimension ()
sunindextypel[] in, inout, out integer (c_long), dimension (x)
N_Vector in, inout, out type (N_Vector)

N_Vector return type (N_Vector), pointer

SUNMatrix in, inout, out type (SUNMatrix)

SUNMatrix return type (SUNMatrix), pointer
SUNLinearSolver in, inout, out type (SUNLinearSolver)
SUNLinearSolver return type (SUNLinearSolver), pointer
SUNNonlinearSolver | in, inout, out type (SUNNonlinearSolver)
SUNNonlinearSolver | return type (SUNNonlinearSolver), pointer
FILE~* in, inout, out, return type (c_ptr)

voidx in, inout, out, return type (c_ptr)

TH* in, inout, out, return type (c_ptr)

Txx % in, inout, out, return type (c_ptr)

Tx*** in, inout, out, return type (c_ptr)

7.1.3 Notable Fortran/C usage differences

While the Fortran 2003 interface to SUNDIALS closely follows the C API, some differences are inevitable due to the
differences between Fortran and C. In this section, we note the most critical differences. Additionally, section Data
Types discusses equivalencies of data types in the two languages.

Creating generic SUNDIALS objects

In the C API a generic SUNDIALS object, such as an N_Vector, is actually a pointer to an underlying C struct.
However, in the Fortran 2003 interface, the derived type is bound to the C struct, not the pointer to the struct. E.g.,
type (N_Vector) is bound to the C struct _generic_N_Vector not the N_Vector type. The consequence of

7.1. ARKode Fortran 2003 Interface Modules 187

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

this is that creating and declaring SUNDIALS objects in Fortran is nuanced. This is illustrated in the code snippets
below:

C code:

N_Vector x;
x = N_VNew_Serial (N);

Fortran code:

type (N_Vector), pointer :: x
x => FN_VNew_Serial (N)

Note that in the Fortran declaration, the vector is a t ype (N_Vector), pointer, and that the pointer assignment
operator is then used.

Arrays and pointers

Unlike in the C API, in the Fortran 2003 interface, arrays and pointers are treated differently when they are return
values versus arguments to a function. Additionally, pointers which are meant to be out parameters, not arrays, in
the C API must still be declared as a rank-1 array in Fortran. The reason for this is partially due to the Fortran 2003
standard for C bindings, and partially due to the tool used to generate the interfaces. Regardless, the code snippets
below illustrate the differences.

C code:

N_Vector x
realtypex xdata;
long int leniw, lenrw;

x = N_VNew_Serial (N);

/% capturing a returned array/pointer #*/
xdata = N_VGetArrayPointer (x)

/% passing array/pointer to a function #*/
N_VSetArrayPointer (xdata, x)

/* pointers that are out-parameters =*/
N_VSpace (x, &leniw, &lenrw);

Fortran code:

type (N_Vector), pointer :: x

real (c_double), pointer :: xdataptr(:)

real (c_double) :: xdata (N)

integer (c_long) :: leniw(l), lenrw(l)

x => FN_VNew_Serial (x)

! capturing a returned array/pointer
xdataptr => FN_VGetArrayPointer (x)

! passing array/pointer to a function
call FN_VSetArrayPointer (xdata, x)

! pointers that are out-parameters
call FN_VSpace (x, leniw, lenrw)

188 Chapter 7. Using ARKode for Fortran Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Passing procedure pointers and user data

Since functions/subroutines passed to SUNDIALS will be called from within C code, the Fortran procedure must
have the attribute bind (C) Additionally, when providing them as arguments to a Fortran 2003 interface routine, it is
required to convert a procedure’s Fortran address to C with the Fortran intrinsic c_funloc.

Typically when passing user data to a SUNDIALS function, a user may simply cast some custom data structure as a
voidx. When using the Fortran 2003 interfaces, the same thing can be achieved. Note, the custom data structure does
not have to be bind (C) since it is never accessed on the C side.

C code:

MyUserData* udata;
void *cvode_mem;

ierr = CVodeSetUserData (cvode_mem, udata);

Fortran code:

type (MyUserData) :: udata
type (c_ptr) :: arkode_mem

ierr = FARKStepSetUserData (arkode_mem, c_loc (udata))

On the other hand, Fortran users may instead choose to store problem-specific data, e.g. problem parameters, within
modules, and thus do not need the SUNDIALS-provided user_data pointers to pass such data back to user-supplied
functions. These users should supply the c_null_ptr input for user_data arguments to the relevant SUNDIALS
functions.

Passing NULL to optional parameters

In the SUNDIALS C API some functions have optional parameters that a caller can pass NULL to. If the optional pa-
rameter is of a type that is equivalent to a Fortran t ype (c_ptr) (see section Data Types), then a Fortran user can pass
the intrinsic c_null_ptr. However, if the optional parameter is of a type that is not equivalent to t ype (c_ptr),
then a caller must provide a Fortran pointer that is dissociated. This is demonstrated in the code example below.

C code:

SUNLinearSolver LS;
N_Vector x, b;

! SUNLinSolSolve expects a SUNMatrix or NULL
! as the second parameter.
ierr = SUNLinSolSolve (LS, NULL, x, b);

Fortran code:

type (SUNLinearSolver), pointer :: LS
type (SUNMatrix), pointer :: A

type (N_Vector), pointer :: x, b

A => null ()

! SUNLinSolSolve expects a type(SUNMatrix), pointer

! as the second parameter. Therefore, we cannot

! pass a c_null_ptr, rather we pass a disassociated A.
ierr = FSUNLinSolSolve (LS, A, x, b)

7.1. ARKode Fortran 2003 Interface Modules 189

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Working with N_Vector arrays

Arrays of N_Vector objects are interfaced to Fortran 2003 as opaque type (c_ptr). As such, it is not possible to
directly index an array of N_Vector objects returned by the N_Vector “VectorArray” operations, or packages with
sensitivity capabilities. Instead, SUNDIALS provides a utility function FN_VGetVecAt IndexVectorArray that
can be called for accessing a vector in a vector array. The example below demonstrates this:

C code:

N_Vector x;
N_Vector* vecs;

vecs = N_VCloneVectorArray (count, x);
for (int i=0; i < count; ++1)
N_VConst (vecs[1]);

Fortran code:

type (N_Vector), pointer :: x, xi
type (c_ptr) :: vecs
vecs = FN_VCloneVectorArray (count, x)

do index, count

xi => FN_VGetVecAtIndexVectorArray (vecs, index)
call FN_VConst (x1)

enddo

SUNDIALS also provides the functions FN_VSetVecAt IndexVectorArray and FN_VNewVectorArray for
working with N_Vector arrays. These functions are particularly useful for users of the Fortran interface to the
NVECTOR_MANYVECTOR or NVECTOR_MPIMANYVECTOR when creating the subvector array. Both of these func-
tions along with FN_VGetVecAtIndexVectorArray are further described in Chapter NVECTOR Utility Func-
tions.

Providing file pointers

Expert SUNDIALS users may notice that there are a few advanced functions in the SUNDIALS C API which take
a FILE~* argument. Since there is no portable way to convert between a Fortran file descriptor and a C file pointer,
SUNDIALS provides two utility functions for creating a FILE * and destroying it. These functions are defined in the
module fsundials_futils_mod.

function FSUNDIALSFileOpen (filename, mode)
The function allocates a FILE* by calling the C function fopen with the provided filename and I/O mode.

The function argument £ilename is the full path to the file and has the type character (kind=C_CHAR,
len=x%).

The function argument mode has the type character (kind=C_CHAR, len=x). The string begins with
one of the following characters:

*“r” - open text file for reading

*“r+” - open text file for reading and writing

*“w” - truncate text file to zero length or create it for writing

*“w+” - open text file for reading or writing, create it if it does not exist

*“a” - open for appending, see documentation of fopen for your system/compiler

*“a+ - open for reading and appending, see documentation for fopen for your system/compiler

190 Chapter 7. Using ARKode for Fortran Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

The function returns a t ype (C_PTR) which holdsa C FILE *.

subroutine FSUNDIALSFileClose (fp)
The function deallocates a C FILE « by calling the C function fclose with the provided pointer.

The function argument £p has the type type (c_ptr) and should be the C FILE+ obtained from fopen.

7.1.4 Important notes on portability

The SUNDIALS Fortran 2003 interface should be compatible with any compiler supporting the Fortran 2003 ISO
standard. However, it has only been tested and confirmed to be working with GNU Fortran 4.9+ and Intel Fortran
18.0.1+.

Upon compilation of SUNDIALS, Fortran module (.mod) files are generated for each Fortran 2003 interface. These
files are highly compiler specific, and thus it is almost always necessary to compile a consuming application with the
same compiler used to generate the modules.

7.2 FARKODE, an Interface Module for FORTRAN Applications

The FARKODE interface module is a package of C functions which support the use of the ARKStep time-stepping
module for the solution of ODE systems

My = fE(tvy) +fI(t7y)a

in a mixed Fortran/C setting. While ARKode is written in C, it is assumed here that the user’s calling program and
user-supplied problem-defining routines are written in Fortran. We assume only minimal Fortran capabilities; specif-
ically that the Fortran compiler support full Fortran77 functionality (although more modern standards are similarly
supported). This package provides the necessary interfaces to ARKODE for the majority of supplied serial and paral-
lel NVECTOR implementations.

7.2.1 Important note on portability

In this package, the names of the interface functions, and the names of the Fortran user routines called by them, appear
as dummy names which are mapped to actual values by a series of definitions in the header files. By default, those
mapping definitions depend in turn on the C macro F77_FUNC defined in the header file sundials_config.h.
The mapping defined by F77_FUNC in turn transforms the C interface names to match the name-mangling approach
used by the supplied Fortran compiler.

By “name-mangling”, we mean that due to the case-independent nature of the Fortran language, Fortran compilers
convert all subroutine and object names to use either all lower-case or all upper-case characters, and append either
zero, one or two underscores as a prefix or suffix the the name. For example, the Fortran subroutine MyFunction ()
will be changed to one of myfunction, MYFUNCTION, myfunction__, MYFUNCTION_, and so on, depending
on the Fortran compiler used.

SUNDIALS determines this name-mangling scheme at configuration time (see ARKode Installation Procedure).

7.2.2 Fortran Data Types

Throughout this documentation, we will refer to data types according to their usage in C. The equivalent types to these
may vary, depending on your computer architecture and on how SUNDIALS was compiled (see ARKode Installation
Procedure). A Fortran user should first determine the equivalent types for their architecture and compiler, and then
take care that all arguments passed through this Fortran/C interface are declared of the appropriate type.

7.2. FARKODE, an Interface Module for FORTRAN Applications 191

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Integers: SUNDIALS uses int, long int and sunindextype types. As discussed in ARKode Installation
Procedure, at compilation SUNDIALS allows the configuration of the ‘index’ type, that accepts values of 32-bit
signed and 64-bit signed. This choice dictates the size of a SUNDIALS sunindextype variable.

* int —equivalent to an INTEGER or INTEGER«4 in Fortran
* long int — this will depend on the computer architecture:
— 32-bit architecture — equivalent to an INTEGER or INTEGER=«4 in Fortran
— 64-bit architecture — equivalent to an INTEGER« 8 in Fortran
* sunindextype — this will depend on the SUNDIALS configuration:
— 32-bit — equivalent to an INTEGER or INTEGER«4 in Fortran
— 64-bit — equivalent to an INTEGER« 8 in Fortran

Real numbers: As discussed in ARKode Installation Procedure, at compilation SUNDIALS allows the configuration
option ——with-precision, that accepts values of single, double or extended (the default is double).
This choice dictates the size of a realtype variable. The corresponding Fortran types for these realtype sizes
are:

* single —equivalent to a REAL or REAL«4 in Fortran
* double — equivalent to a DOUBLE PRECISION or REAL=« 8 in Fortran
* extended — equivalent to a REAL* 16 in Fortran

We note that when SUNDIALS is compiled with Fortran interfaces enabled, a file
sundials/sundials_fconfig.h is placed in the installation’s include directory, containing informa-
tion about the Fortran types that correspond to the C types of the configured SUNDIALS installation. This file may
be “included” by Fortran routines, as long as the compiler supports the Fortran90 standard (or higher), as shown in
the ARKode example programs ark_bruss.f£90, ark_brusslD_FEM_klu.f90 and fark_heat2D.£90.

Details on the Fortran interface to ARKode are provided in the following sub-sections:

FARKODE routines

In this section, we list the full set of user-callable functions comprising the FARKODE solver interface. For each
function, we list the corresponding ARKStep functions, to provide a mapping between the two solver interfaces.
Further documentation on each FARKODE function is provided in the following sections, Usage of the FARKODE
interface module, FARKODE optional output, Usage of the FARKROOT interface to rootfinding and Usage of the
FARKODE interface to built-in preconditioners. Additionally, all Fortran and C functions below are hyperlinked to
their definitions in the documentation, for simplified access.

Interface to the NVECTOR modules

e FNVINITS () (defined by NVECTOR_SERIAL) interfaces to N_VNewEmpty_ Serial ().
e FNVINITP () (defined by NVECTOR_PARALLEL) interfaces to N_VNewEmpty_Parallel ().
e FNVINITOMP () (defined by NVECTOR_OPENMP) interfaces to N_VNewEmpty_ OpenMP ().

FNVINITPTS () (defined by NVECTOR_PTHREADS) interfaces to N_VNewEmpty_Pthreads ().

FNVINITPH () (defined by NVECTOR_PARHYP) interfaces to N_VNewEmpty_ ParHyp ().

192 Chapter 7. Using ARKode for Fortran Applications

User Documentation for ARKode v4.1.0

(SUNDIALS v5.1

0),

Interface to the SUNMATRIX modules

* FSUNBANDMATINIT () (defined by SUNMATRIX_BAND) interfaces to SUNBandMatrix ().
e FSUNDENSEMATINIT () (defined by SUNMATRIX_DENSE) interfaces to SUNDenseMatrix ().

* FSUNSPARSEMATINIT () (defined by SUNMATRIX_SPARSE) interfaces to SUNSparseMatrix ().

Interface to the SUNLINSOL modules

e FSUNBANDLINSOLINIT () (defined by SUNLINSOL_BAND) interfaces to SUNLinSol_Band().
* FSUNDENSELINSOLINIT () (defined by SUNLINSOL_DENSE) interfaces to SUNLinSol Dense ()
e FSUNKLUINIT () (defined by SUNLINSOL_KLU) interfaces to SUNLinSol KLU().

* FSUNKLUREINIT () (defined by SUNLINSOL_KLU) interfaces to SUNLinSol_KLUReinit ().

* FSUNLAPACKBANDINIT () (defined by SUNLINSOL_LAPACKBAND) interfaces
SUNLinSol_LapackBand().
¢ FSUNLAPACKDENSEINIT () (defined by SUNLINSOL_LAPACKDENSE) interfaces

SUNLinSol_LapackDense ().
* FSUNPCGINIT () (defined by SUNLINSOL_PCG) interfaces to SUNLinSol_PCG ().
* FSUNSPBCGSINIT () (defined by SUNLINSOL_SPBCGS) interfaces to SUNLinSol_SPBCGS ().
* FSUNSPFGMRINIT () (defined by SUNLINSOL_SPFGMR) interfaces to SUNLinSol SPFGMR ().

* FSUNSPGMRINIT () (defined by SUNLINSOL_SPGMR) interfaces to SUNLinSol_SPGMR ().

to

to

* FSUNSPTFQMRINIT () (defined by SUNLINSOL_SPTFQMR) interfaces to SUNLinSol SPTFQOMR ().

¢ FSUNSUPERLUMTINIT () (defined by SUNLINSOL_SUPERLUMT) interfaces
SUNLinSol_SuperLUMT ().

Interface to the SUNNONLINSOL modules

e FSUNNEWTONINIT () (defined by SUNNONLINSOL_NEWTON) interfaces
SUNNonlinSol_Newton ().

* FSUNNEWTONSETMAXITERS () (defined by SUNNONLINSOL_NEWTON) interfaces
SUNNonlinSolSetMaxIters () fora SUNNONLINSOL_NEWTON object.

e FSUNFIXEDPOINTINIT () (defined by SUNNONLINSOL_FIXEDPOINT) interfaces

SUNNonlinSol_ Newton ().

* FSUNFIXEDPOINTSETMAXITERS () (defined by SUNNONLINSOL_FIXEDPOINT) interfaces
SUNNonlinSolSetMaxIters () fora SUNNONLINSOL_FIXEDPOINT object.

Interface to the main ARKODE module

to

to

to

to

to

e ARKMALLOC () interfaces to ARKStepCreate () and ARKStepSetUserData (), as well as one of

ARKStepSStolerances () or ARKStepSVtolerances ().
e FARKREINIT () interfaces to ARKStepReInit ().

e FARKRESIZE () interfaces to ARKStepResize ().

7.2. FARKODE, an Interface Module for FORTRAN Applications

193

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

FARKSETIIN () and FARKSETRIN () interface to the ARKStepSet* and ARKStepSet* functions (see Op-
tional input functions).

FARKEWTSET () interfaces to ARKStepWFtolerances ().
FARKADAPTSET () interfaces to ARKStepSetAdaptivityFn ().
FARKEXPSTABSET () interfaces to ARKStepSetStabilityFn ().
FARKSETERKTABLE () interfaces to ARKStepSet Tables ().
FARKSETIRKTABLE () interfaces to ARKStepSet Tables ().
FARKSETARKTABLES () interfaces to ARKStepSetTables ().

FARKSETRESTOLERANCE () interfaces to either ARKStepResStolerance () and
ARKStepResVtolerance ()

FARKODE () interfaces to ARKStepEvolve (), the ARKStepGet* functions (see Optional output functions),
and to the optional output functions for the selected linear solver module (see Optional output functions).

FARKDKY () interfaces to the interpolated output function ARKStepGetDky ().
FARKGETERRWEIGHTS () interfaces to ARKStepGetErrWeights ().
FARKGETESTLOCALERR () interfaces to ARKStepGetEstLocalErrors ().

FARKFREE () interfaces to ARKStepFree ().

Interface to the system nonlinear solver interface

e FARKNLSINIT () interfaces to ARKStepSetNonlinearSolver ().

Interface to the system linear solver interfaces

FARKLSINIT () interfaces to ARKStepSetLinearSolver ().
FARKDENSESETJAC () interfaces to ARKStepSetJacFn ().
FARKBANDSETJAC () interfaces to ARKStepSetJacFn ().
FARKSPARSESETJAC () interfaces to ARKStepSetJacFn ().
FARKLSSETEPSLIN () interfaces to ARKStepSetEpsLin ().
FARKLSSETJAC () interfaces to ARKStepSetJacTimes ().

FARKLSSETPREC () interfaces to ARKStepSetPreconditioner ().

Interface to the mass matrix linear solver interfaces

FARKLSMASSINIT () interfaces to ARKStepSetMassLinearSolver ().
FARKDENSESETMASS () interfaces to ARKStepSetMassFn ().
FARKBANDSETMASS () interfaces to ARKStepSetMassFn ().
FARKSPARSESETMASS () interfaces to ARKStepSetMassFn ().
FARKLSSETMASSEPSLIN () interfaces to ARKStepSetMassEpsLin ().

FARKLSSETMASS () interfaces to ARKStepSetMassTimes ().

194

Chapter 7. Using ARKode for Fortran Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

e FARKLSSETMASSPREC () interfaces to ARKStepSetMassPreconditioner ().

User-supplied routines

As with the native C interface, the FARKODE solver interface requires user-supplied functions to specify the ODE
problem to be solved. In contrast to the case of direct use of ARKStep, and of most Fortran ODE solvers, the names of
all user-supplied routines here are fixed, in order to maximize portability for the resulting mixed-language program. As
a result, whether using a purely implicit, purely explicit, or mixed implicit-explicit solver, routines for both f¥(¢,)
and f7(t,y) must be provided by the user (though either of which may do nothing):

FARKODE routine (FORTRAN, user-supplied) | ARKStep interface function type
FARKIFUN () ARKRhsFn ()
FARKEFUN () ARKRhsFn ()

In addition, as with the native C interface a user may provide additional routines to assist in the solution process. Each
of the following user-supplied routines is activated by calling the specified “activation” routine, with the exception of
FARKSPJAC () which is required whenever a sparse matrix solver is used:

FARKODE routine (FORTRAN, ARKStep interface function FARKODE “activation”

user-supplied)

type routine

FARKDJAC ()

ARKLsJacFn ()

FARKDENSESETJAC ()

FARKBJAC ()

ARKLsJacFn ()

FARKBANDSETJAC ()

FARKSPJAC ()

ARKLsJacFn ()

FARKSPARSESETJAC ()

FARKDMASS ()

ARKLsMassFn ()

FARKDENSESETMASS ()

FARKBMASS ()

ARKLsMassFn ()

FARKBANDSETMASS ()

FARKSPMASS ()

ARKLsMassFn ()

FARKSPARSESETMASS ()

FARKPSET ()

ARKLsPrecSetupFn ()

FARKLSSETPREC ()

FARKPSOL ()

ARKLsPrecSolveFn ()

FARKLSSETPREC ()

FARKJTSETUP ()

ARKLsJacTimesSetupFn ()

FARKLSSETJAC ()

FARKJTIMES ()

ARKLsJacTimesVecFn ()

FARKLSSETJAC ()

FARKMASSPSET ()

ARKLsMassPrecSetupFn ()

FARKLSSETMASSPREC ()

FARKMASSPSOL ()

ARKLsMassPrecSolveFn ()

FARKLSSETMASSPREC ()

FARKMTSETUP ()

ARKILsMassTimesSetupFn (

FARKLSSETMASS ()

FARKMTIMES ()

ARKLsMassTimesVecFn ()

FARKLSSETMASS ()

FARKEWT ()

ARKEWtFn ()

FARKEWTSET ()

FARKADAPT ()

ARKAdaptFn ()

FARKADAPTSET ()

FARKEXPSTAB ()

ARKExpStabFn ()

FARKEXPSTABSET ()

Usage of the FARKODE interface module

The usage of FARKODE requires calls to a variety of interface functions, depending on the method options selected,
and two or more user-supplied routines which define the problem to be solved. These function calls and user rou-
tines are summarized separately below. Some details are omitted, and the user is referred to the description of the
corresponding C interface ARKStep functions for complete information on the arguments of any given user-callable
interface routine, or of a given user-supplied function called by an interface function. The usage of FARKODE for
rootfinding and with preconditioner modules is described in later subsections.

Right-hand side specification

The user must in all cases supply the following Fortran routines:

7.2. FARKODE, an Interface Module for FORTRAN Applications 195

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

subroutine FARKIFUN (7, Y, YDOT, IPAR, RPAR, IER)
Sets the YDOT array to f!(t,y), the implicit portion of the right-hand side of the ODE system, as function of
the independent variable T = t and the array of dependent state variables ¥ = y.

Arguments:
* T (realtype, input) — current value of the independent variable.
* Y (realtype, input) — array containing state variables.
e YDOT (realtype, output) — array containing state derivatives.
* IPAR (long int, input) — array containing integer user data that was passed to FARKMALLOC ().
* RPAR (realtype, input) — array containing real user data that was passed to FARKMALLOC ().
e [ER (int, output) — return flag (0 success, >0 recoverable error, <0 unrecoverable error).

subroutine FARKEFUN (7, Y, YDOT, IPAR, RPAR, IER)
Sets the YDOT array to f(t,), the explicit portion of the right-hand side of the ODE system, as function of
the independent variable T = ¢ and the array of dependent state variables ¥ = y.

Arguments:
e T (realtype, input) — current value of the independent variable.
* Y (realtype, input) — array containing state variables.
e YDOT (realtype, output) — array containing state derivatives.
e IPAR (long int, input) — array containing integer user data that was passed to FARKMALLOC ().
* RPAR (realtype, input) — array containing real user data that was passed to FARKMALLOC ().
e JER (int, output) — return flag (O success, >0 recoverable error, <0 unrecoverable error).

For purely explicit problems, although the routine FARKTFUN () must exist, it will never be called, and may remain
empty. Similarly, for purely implicit problems, FARKEFUN () will never be called and must exist and may remain
empty.

NVECTOR module initialization

If using one of the NVECTOR modules supplied with SUNDIALS, the user must make a call of the form

CALL FNVINITS (4, NEQ, IER)
CALL FNVINITP (COMM, 4, NLOCAL, NGLOBAL, IER)
CALL FNVINITOMP (4, NEQ, NUM_THREADS, IER)
CALL FNVINITPTS (4, NEQ, NUM_THREADS, IER)
CALL FNVINITPH (COMM, 4, NLOCAL, NGLOBAL, IER)

in which the specific arguments are as described in the appropriate section of the Chapter Vector Data Structures.

SUNMATRIX module initialization

In the case of using either an implicit or ImEx method, the solution of each Runge-Kutta stage may involve the
I

solution of linear systems related to the Jacobian J = % of the implicit portion of the ODE system. If using a

Newton iteration with direct SUNLINSOL linear solver module and one of the SUNMATRIX modules supplied with

SUNDIALS, the user must make a call of the form

196 Chapter 7. Using ARKode for Fortran Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

CALL FSUNBANDMATINIT (4, N, MU, ML, SMU, IER)
CALL FSUNDENSEMATINIT (4, M, N, IER)
CALL FSUNSPARSEMATINIT (4, M, N, NNZ, SPARSETYPE, IER)

in which the specific arguments are as described in the appropriate section of the Chapter Matrix Data Structures.
Note that these matrix options are usable only in a serial or multi-threaded environment.

As described in the section Mass matrix solver, in the case of using a problem with a non-identity mass matrix (no
matter whether the integrator is implicit, explicit or ImEX), linear systems of the form Mz = b must be solved, where
M is the system mass matrix. If these are to be solved with a direct SUNLINSOL linear solver module and one of the
SUNMATRIX modules supplied with SUNDIALS, the user must make a call of the form

CALL FSUNBANDMASSMATINIT (N, MU, ML, SMU, IER)
CALL FSUNDENSEMASSMATINIT (M, N, IER)
CALL FSUNSPARSEMASSMATINIT (M, N, NNZ, SPARSETYPE, IER)

in which the specific arguments are as described in the appropriate section of the Chapter Matrix Data Structures,
again noting that these are only usable in a serial or multi-threaded environment.

SUNLINSOL module initialization

If using a Newton iteration with one of the SUNLINSOL linear solver modules supplied with SUNDIALS, the user
must make a call of the form

CALL FSUNBANDLINSOLINIT (4, IER)

CALL FSUNDENSELINSOLINIT (4, IER)

CALL FSUNKLUINIT (4, IER)

CALL FSUNLAPACKBANDINIT (4, IER)

CALL FSUNLAPACKDENSEINIT (4, IER)

CALL FSUNPCGINIT (4, PRETYPE, MAXL, IER)
CALL FSUNSPBCGSINIT (4, PRETYPE, MAXL, IER)
CALL FSUNSPFGMRINIT (4, PRETYPE, MAXL, IER)
CALL FSUNSPGMRINIT (4, PRETYPE, MAXL, IER)
CALL FSUNSPTFQMRINIT (4, PRETYPE, MAXL, IER)
CALL FSUNSUPERLUMTINIT (4, NUM_THREADS, IER)

in which the specific arguments are as described in the appropriate section of the Chapter Description of the SUN-
LinearSolver module. Note that the dense, band and sparse solvers are usable only in a serial or multi-threaded
environment.

Once one of these has been initialized, its solver parameters may be modified using a call to the functions

CALL FSUNKLUSETORDERING (4, ORD_CHOICE, IER)
CALL FSUNSUPERLUMTSETORDERING (4, ORD_CHOICE, IER)
CALL FSUNPCGSETPRECTYPE (4, PRETYPE, IER)
CALL FSUNPCGSETMAXL (4, MAXL, IER)

CALL FSUNSPBCGSSETPRECTYPE (4, PRETYPE, IER)
CALL FSUNSPBCGSSETMAXL (4, MAXL, IER)

CALL FSUNSPFGMRSETGSTYPE (4, GSTYPE, IER)
CALL FSUNSPFGMRSETPRECTYPE (4, PRETYPE, IER)
CALL FSUNSPGMRSETGSTYPE (4, GSTYPE, IER)

CALL FSUNSPGMRSETPRECTYPE (4, PRETYPE, IER)
CALL FSUNSPTFQMRSETPRECTYPE (4, PRETYPE, IER)
CALL FSUNSPTFQMRSETMAXL (4, MAXL, IER)

where again the call sequences are described in the appropriate sections of the Chapter Description of the SUNLinear-
Solver module.

7.2. FARKODE, an Interface Module for FORTRAN Applications 197

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Similarly, in the case of using one of the SUNLINSOL linear solver modules supplied with SUNDIALS to solve a
problem with a non-identity mass matrix, the user must make a call of the form

CALL FSUNMASSBANDLINSOLINIT (IER)

CALL FSUNMASSDENSELINSOLINIT (IER)

CALL FSUNMASSKLUINIT (IER)

CALL FSUNMASSLAPACKBANDINIT (IER)

CALL FSUNMASSLAPACKDENSEINIT (IER)

CALL FSUNMASSPCGINIT (PRETYPE, MAXL, IER)
CALL FSUNMASSSPBCGSINIT (PRETYPE, MAXL, IER)
CALL FSUNMASSSPFGMRINIT (PRETYPE, MAXL, IER)
CALL FSUNMASSSPGMRINIT (PRETYPE, MAXL, IER)
CALL FSUNMASSSPTFQOMRINIT (PRETYPE, MAXL, IER)
CALL FSUNMASSSUPERLUMTINIT (NUM_THREADS, IER)

in which the specific arguments are as described in the appropriate section of the Chapter Description of the SUNLin-
earSolver module.

Once one of these has been initialized, its solver parameters may be modified using a call to the functions

CALL FSUNMASSKLUSETORDERING (ORD_CHOICE, IER)
CALL FSUNMASSSUPERLUMTSETORDERING (ORD_CHOICE, IER)
CALL FSUNMASSPCGSETPRECTYPE (PRETYPE, IER)
CALL FSUNMASSPCGSETMAXL (MAXL, IER)

CALL FSUNMASSSPBCGSSETPRECTYPE (PRETYPE, IER)
CALL FSUNMASSSPBCGSSETMAXL (MAXL, IER)

CALL FSUNMASSSPFGMRSETGSTYPE (GSTYPE, IER)
CALL FSUNMASSSPFGMRSETPRECTYPE (PRETYPE, IER)
CALL FSUNMASSSPGMRSETGSTYPE (GSTYPE, IER)

CALL FSUNMASSSPGMRSETPRECTYPE (PRETYPE, IER)
CALL FSUNMASSSPTFQMRSETPRECTYPE (PRETYPE, IER)
CALL FSUNMASSSPTFQMRSETMAXL (MAXL, IER)

where again the call sequences are described in the appropriate sections of the Chapter Description of the SUNLinear-
Solver module.

SUNNONLINSOL module initialization

If using a non-default nonlinear solver method, the user must make a call of the form

CALL FSUNNEWTONINIT (4, IER)
CALL FSUNFIXEDPOINTINIT (4, M, IER)

in which the specific arguments are as described in the appropriate section of the Chapter Description of the SUNNon-
linearSolver Module.

Once one of these has been initialized, its solver parameters may be modified using a call to the functions

CALL FSUNNEWTONSETMAXITERS (4, MAXITERS, IER)
CALL FSUNFIXEDPOINTSETMAXITERS (4, MAXITERS, IER)

where again the call sequences are described in the appropriate sections of the Chapter Description of the SUNNon-
linearSolver Module.

Problem specification

To set various problem and solution parameters and allocate internal memory, the user must call FARKMALLOC ().

198 Chapter 7. Using ARKode for Fortran Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

subroutine FARKMALLOC (70, Y0, IMEX, IATOL, RTOL, ATOL, IOUT, ROUT, IPAR, RPAR, IER)
Initializes the Fortran interface to the ARKStep solver, providing interfaces to the C routines
ARKStepCreate () and ARKStepSetUserData (), as well as one of ARKStepSStolerances () or
ARKStepSVtolerances ().

Arguments:

T0 (realtype, input) — initial value of ¢.
Y0 (realtype, input) — array of initial conditions.
IMEX (int, input) — flag denoting basic integration method: 0 = implicit, 1 = explicit, 2 = ImEx.

IATOL (int, input) — type for absolute tolerance input ATOL: 1 = scalar, 2 = array, 3 = user-supplied
function; the user must subsequently call FARKEWTSET () and supply a routine FARKEWT () to
compute the error weight vector.

RTOL (realtype, input) — scalar relative tolerance.

ATOL (realtype, input) — scalar or array absolute tolerance.

IOUT (long int, input/output) — array of length 29 for integer optional outputs.
ROUT (realtype, input/output) — array of length 6 for real optional outputs.

IPAR (long int, input/output) — array of user integer data, which will be passed unmodified to all
user-provided routines.

RPAR (realtype, input/output) — array with user real data, which will be passed unmodified to all
user-provided routines.

IER (int, output) — return flag (0 success, # 0 failure).

Notes: Modifications to the user data arrays /PAR and RPAR inside a user-provided routine will be propagated
to all subsequent calls to such routines. The optional outputs associated with the main ARKStep integrator are
listed in Table: Optional FARKODE integer outputs and Table: Optional FARKODE real outputs, in the section
FARKODE optional output.

As an alternative to providing tolerances in the call to FARKMALLOC (), the user may provide a routine to compute
the error weights used in the WRMS norm evaluations. If supplied, it must have the following form:

subroutine FARKEWT (Y, EWT, IPAR, RPAR, IER)
It must set the positive components of the error weight vector EWT for the calculation of the WRMS norm of Y.

Arguments:

Y (realtype, input) — array containing state variables.
EWT (realtype, output) — array containing the error weight vector.

IPAR (long int, input) — array containing the integer user data that was passed to
FARKMALLOC ().

RPAR (realtype, input) — array containing the real user data that was passed to FARKMALLOC ().

IER (int, output) — return flag (0 success, # 0 failure).

If the FARKEWT () routine is provided, then, following the call to FARKMALLOC (), the user must call the function
FARKEWTSET ().

subroutine FARKEWTSET (FLAG, IER)
Informs FARKODE to use the user-supplied FARKEWT () function.

Arguments:

FLAG (int, input) — flag, use “1” to denoting to use FARKEWT ().

7.2. FARKODE, an Interface Module for FORTRAN Applications 199

User Documentation for ARKode v4.1.0

(SUNDIALS v5.1.0),

e [ER (int, output) — return flag (0 success, # 0 failure).

Setting optional inputs

Unlike ARKStep’s C interface, that provides separate functions for setting each optional input, FARKODE uses only
three functions, that accept keywords to specify which optional input should be set to the provided value. These
routines are FARKSETIIN (), FARKSETRIN (), and FARKSETVIN () and are further described below.

subroutine FARKSETIIN (KEY, IVAL, IER)
Specification routine to pass optional integer inputs to the FARKODE () solver.

Arguments:

* KEY (quoted string, input) — which optional input is set (see Table: Keys for setting FARKODE integer
optional inputs).

e J[VAL (long int, input) — the integer input value to be used.

e [ER (int, output) — return flag (0 success, # 0 failure).

Table: Keys for setting FARKODE integer optional inputs

Key ARKStep routine

ORDER ARKStepSetOrder ()
DENSE_ORDER ARKStepSetDenseOrder ()
LINEAR ARKStepSetLinear ()
NONLINEAR ARKStepSetNonlinear ()
EXPLICIT ARKStepSetExplicit ()
IMPLICIT ARKStepSetImplicit ()
IMEX ARKStepSetImEx ()

IRK_TABLE_NUM

ARKStepSetTableNum/()

ERK_TABLE_NUM

ARKStepSetTableNum/()

ARK_TABLE_NUM (a)

ARKStepSetTableNum/()

MAX_NSTEPS

ARKStepSetMaxNumSteps ()

HNIL_WARNS

ARKStepSetMaxHnilWarns ()

PREDICT_METHOD

ARKStepSetPredictorMethod ()

MAX_ERRFAIL

ARKStepSetMaxErrTestFails ()

MAX_CONVFAIL

ARKStepSetMaxConvFails ()

MAX_NITERS

ARKStepSetMaxNonlinIters ()

ADAPT_SMALL_NEF

ARKStepSetSmallNumEFails ()

LSETUP_MSBP

ARKStepSetMaxStepsBetweenLSet ()

MAX_CONSTR_FAIL

ARKStepSetMaxNumConstrFails ()

(a) When setting ARK_TABLE_NUM, pass in /[VAL as an array of length 2, specifying the IRK table number first, then
the ERK table number. The integer specifiers for each table may be found in the section Appendix: ARKode Constants,
or in the ARKode header files arkode_butcher_dirk.h and arkode_butcher_erk.h.

subroutine FARKSETRIN (KEY, RVAL, IER)
Specification routine to pass optional real inputs to the FARKODE () solver.

Arguments:

* KEY (quoted string, input) — which optional input is set (see Table: Keys for setting FARKODE real
optional inputs).

* RVAL (realtype, input) — the real input value to be used.

200

Chapter 7. Using ARKode for Fortran Applications

User Documentation for ARKode v4.1.0

(SUNDIALS v5.1.0),

e [ER (int, output) — return flag (0 success, # 0 failure).

Table: Keys for setting FARKODE real optional inputs

Key ARKStep routine

INIT_STEP ARKStepSetInitStep()
MAX_STEP ARKStepSetMaxStep ()
MIN_STEP ARKStepSetMinStep ()
STOP_TIME ARKStepSetStopTime ()
NLCONV_COEF ARKStepSetNonlinConvCoef ()
ADAPT_CFL ARKStepSetCFLFraction ()

ADAPT_SAFETY

ARKStepSetSafetyFactor ()

ADAPT_BIAS

ARKStepSetErrorBias ()

ADAPT_GROWTH

ARKStepSetMaxGrowth ()

ADAPT_ ETAMX1

ARKStepSetMaxFirstGrowth ()

ADAPT_BOUNDS

ARKStepSetFixedStepBounds ()

ADAPT_ETAMXF

ARKStepSetMaxEFailGrowth ()

ADAPT_ETACF

ARKStepSetMaxCFailGrowth ()

NONLIN_CRDOWN

ARKStepSetNonlinCRDown ()

NONLIN_RDIV

ARKStepSetNonlinRDiv ()

LSETUP_DGMAX

ARKStepSetDeltaGammaMax ()

FIXED_STEP

ARKStepSetFixedStep ()

subroutine FARKSETVIN (KEY, VVAL, IER)
Specification routine to pass optional vector inputs to the FARKODE () solver.

Arguments:

¢ KEY (quoted string, input) — which optional input is set (see Table: Keys for setting FARKODE vector
optional inputs).

e VVAL (realtypex, input) — the input vector of real values to be used.

e IER (int, output) — return flag (0 success, # 0 failure).

Table: Keys for setting FARKODE vector optional inputs

Key ARKStep routine
CONSTR_VEC | ARKStepSetConstraints ()

If a user wishes to reset all of the options to their default values, they may call the routine FARKSETDEFAULTS ().

subroutine FARKSETDEFAULTS (/ER)
Specification routine to reset all FARKODE optional inputs to their default values.

Arguments:

e [ER (int, output) — return flag (0 success, # 0 failure).

Optional advanced FARKODE inputs FARKODE supplies additional routines to specify optional advanced in-
puts to the ARKStepEvolve () solver. These are summarized below, and the user is referred to their C routine
counterparts for more complete information.

subroutine FARKSETERKTABLE (S, O, P, C, A, B, BEMBED, IER)
Interface to the routine ARKStepSetTables ().

7.2. FARKODE, an Interface Module for FORTRAN Applications 201

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

Arguments:
* S (int, input) — number of stages in the table.
* O (int, input) — global order of accuracy of the method.
* P (int, input) — global order of accuracy of the embedding.
* C (realtype, input) — array of length S containing the stage times.

* A (realtype, input) — array of length S*S containing the ERK coefficients (stored in row-major,
“C”, order).

* B(realtype, input) — array of length S containing the solution coefficients.

BEMBED (realtype, input) — array of length S containing the embedding coefficients.
¢ IER (int, output) — return flag (O success, # 0 failure).

subroutine FARKSETIRKTABLE (S, Q, P, C, A, B, BEMBED, IER)
Interface to the routine ARKStepSetTables ().

Arguments:
* S (int, input) — number of stages in the table.
* O (int, input) — global order of accuracy of the method.
e P (int, input) — global order of accuracy of the embedding.
* C (realtype, input) — array of length S containing the stage times.

* A (realtype, input) — array of length S*S containing the IRK coefficients (stored in row-major,
“C”, order).

* B(realtype, input) — array of length S containing the solution coefficients.
* BEMBED (realtype, input) — array of length S containing the embedding coefficients.
e [ER (int, output) — return flag (0 success, # 0 failure).

subroutine FARKSETARKTABLES (S, O, P, CI, CE, Al, AE, BI, BE, B2I, B2E, IER)
Interface to the routine ARKStepSetTables ().

Arguments:
* S (int, input) — number of stages in the table.
* O (int, input) — global order of accuracy of the method.
e P (int, input) — global order of accuracy of the embedding.
e CI (realtype, input) — array of length S containing the implicit stage times.
* CE (realtype, input) — array of length S containing the explicit stage times.

e Al (realtype, input) — array of length S*$ containing the IRK coefficients (stored in row-major,
“C”, order).

* AE (realtype, input) — array of length S*S containing the ERK coefficients (stored in row-major,
“C”, order).

* Bl (realtype, input) — array of length S containing the implicit solution coefficients.
* BE (realtype, input) — array of length S containing the explicit solution coefficients.
* B2] (realtype, input) — array of length S containing the implicit embedding coefficients.

* B2E (realtype, input) — array of length S containing the explicit embedding coefficients.

202 Chapter 7. Using ARKode for Fortran Applications

User Documentation for ARKode v4.1.0
(SUNDIALS v5.1.0),

e [ER (int, output) — return flag (0 success, # 0 failure).

subroutine FARKSETRESTOLERANCE (/ATOL, ATOL, IER)
Interface to the routines ARKStepResStolerance () and ARKStepResVtolerance ().

Arguments:
e JATOL (int, input) — type for absolute residual tolerance input ATOL: 1 = scalar, 2 = array.
e ATOL (realtype, input) — scalar or array absolute residual tolerance.
e [ER (int, output) — return flag (0 success, # 0 failure).

Additionally, a user may set the accuracy-based step size adaptivity strategy (and it’s associated parameters) through
acall to FARKSETADAPTIVITYMETHOD (), as described below.

subroutine FARKSETADAPTIVITYMETHOD (IMETHOD, IDEFAULT, IPQ, PARAMS, IER)
Specification routine to set the step size adaptivity strategy and parameters within the FARKODE () solver.
Interfaces with the C routine ARKStepSetAdaptivityMethod ().

Arguments:

e IMETHOD (int, input) — choice of adaptivity method.

IDEFAULT (int, input) — flag denoting whether to use default parameters (1) or that customized
parameters will be supplied (1).

e IPQ (int, input) — flag denoting whether to use the embedding order of accuracy (0) or the method
order of accuracy (1) within step adaptivity algorithm.

* PARAMS (realtype, input) — array of 3 parameters to be used within the adaptivity strategy.
e IER (int, output) — return flag (0 success, # 0 failure).

Lastly, the user may provide functions to aid/replace those within ARKStep for handling adaptive error control and
explicit stability. The former of these is designed for advanced users who wish to investigate custom step adaptivity
approaches as opposed to using any of those built-in to ARKStep. In ARKStep’s C/C++ interface, this would be
provided by a function of type ARKAdaptFn (); in the Fortran interface this is provided through the user-supplied
function:

subroutine FARKADAPT (Y, T, Hl, H2, H3, El, E2, E3, Q, P, HNEW, IPAR, RPAR, IER)
It must set the new step size HNEW based on the three previous steps (H1, H2, H3) and the three previous error
estimates (El, E2, E3).

Arguments:
e Y (realtype, input) — array containing state variables.
e T (realtype, input) — current value of the independent variable.
* HI (realtype, input) — current step size.
* H2 (realtype, input) — previous step size.
* H3 (realtype, input) — previous-previous step size.
e El (realtype, input) — estimated temporal error in current step.
* E2 (realtype, input) — estimated temporal error in previous step.
e E3 (realtype, input) — estimated temporal error in previous-previous step.
* O (int, in